# Copyright (c) 2018-2025 by xcube team and contributors
# Permissions are hereby granted under the terms of the MIT License:
# https://opensource.org/licenses/MIT.
import json
import os.path
from collections.abc import Sequence
from typing import List
import numpy as np
import xarray as xr
import zarr
[docs]
def unchunk_dataset(
dataset_path: str, var_names: Sequence[str] = None, coords_only: bool = False
):
"""Unchunk dataset variables in-place.
Args:
dataset_path: Path to ZARR dataset directory.
var_names: Optional list of variable names.
coords_only: Un-chunk coordinate variables only.
"""
is_zarr = os.path.isfile(os.path.join(dataset_path, ".zgroup"))
if not is_zarr:
raise ValueError(f"{dataset_path!r} is not a valid Zarr directory")
with xr.open_zarr(dataset_path) as dataset:
if var_names is None:
if coords_only:
var_names = list(dataset.coords)
else:
var_names = list(dataset.variables)
else:
for var_name in var_names:
if coords_only:
if var_name not in dataset.coords:
raise ValueError(
f"variable {var_name!r} is not a coordinate variable in {dataset_path!r}"
)
else:
if var_name not in dataset.variables:
raise ValueError(
f"variable {var_name!r} is not a variable in {dataset_path!r}"
)
_unchunk_vars(dataset_path, var_names)
def _unchunk_vars(dataset_path: str, var_names: list[str]):
for var_name in var_names:
var_path = os.path.join(dataset_path, var_name)
# Optimization: if "shape" and "chunks" are equal in ${var}/.zarray, we are done
var_array_info_path = os.path.join(var_path, ".zarray")
with open(var_array_info_path) as fp:
var_array_info = json.load(fp)
if var_array_info.get("shape") == var_array_info.get("chunks"):
continue
# Open array and remove chunks from the data
var_array = zarr.convenience.open_array(var_path, "r+")
if var_array.shape != var_array.chunks:
# TODO (forman): Fully loading data is inefficient and dangerous for large arrays.
# Instead save unchunked to temp and replace existing chunked array dir with temp.
# Fully load data and attrs so we no longer depend on files
data = np.array(var_array)
attributes = var_array.attrs.asdict()
# Save array data
zarr.convenience.save_array(
var_path, data, chunks=False, fill_value=var_array.fill_value
)
# zarr.convenience.save_array() does not seem save user attributes (file ".zattrs" not written),
# therefore we must modify attrs explicitly:
var_array = zarr.convenience.open_array(var_path, "r+")
var_array.attrs.update(attributes)
zarr.consolidate_metadata(dataset_path)