Source code for xcube.core.optimize

# Copyright (c) 2018-2024 by xcube team and contributors
# Permissions are hereby granted under the terms of the MIT License:

import os.path
import shutil
from typing import Type, Union
from import Sequence

import zarr

from xcube.core.unchunk import unchunk_dataset

[docs] def optimize_dataset( input_path: str, output_path: str = None, in_place: bool = False, unchunk_coords: Union[bool, str, Sequence[str]] = False, exception_type: type[Exception] = ValueError, ): """Optimize a dataset for faster access. Reduces the number of metadata and coordinate data files in xcube dataset given by given by *dataset_path*. Consolidated cubes open much faster from remote locations, e.g. in object storage, because obviously much less HTTP requests are required to fetch initial cube meta information. That is, it merges all metadata files into a single top-level JSON file ".zmetadata". If *unchunk_coords* is given, it also removes any chunking of coordinate variables so they comprise a single binary data file instead of one file per data chunk. The primary usage of this function is to optimize data cubes for cloud object storage. The function currently works only for data cubes using Zarr format. *unchunk_coords* can be a name, or list of names of the coordinate variable(s) to be consolidated. If boolean ``True`` is used, coordinate all variables will be consolidated. Args: input_path: Path to input dataset with ZARR format. output_path: Path to output dataset with ZARR format. May contain "{input}" template string, which is replaced by the input path's file name without file name extension. in_place: Whether to modify the dataset in place. If False, a copy is made and *output_path* must be given. unchunk_coords: The name of a coordinate variable or a list of coordinate variables whose chunks should be consolidated. Pass ``True`` to consolidate chunks of all coordinate variables. exception_type: Type of exception to be used on value errors. """ if not os.path.isfile(os.path.join(input_path, ".zgroup")): raise exception_type("Input path must point to ZARR dataset directory.") input_path = os.path.abspath(os.path.normpath(input_path)) if in_place: output_path = input_path else: if not output_path: raise exception_type(f"Output path must be given.") if "{input}" in output_path: base_name, _ = os.path.splitext(os.path.basename(input_path)) output_path = output_path.format(input=base_name) output_path = os.path.abspath(os.path.normpath(output_path)) if os.path.exists(output_path): raise exception_type(f"Output path already exists.") if not in_place: shutil.copytree(input_path, output_path) if unchunk_coords: if isinstance(unchunk_coords, str): var_names = (unchunk_coords,) elif isinstance(unchunk_coords, bool): var_names = None else: var_names = tuple(unchunk_coords) unchunk_dataset(output_path, var_names=var_names, coords_only=True) zarr.convenience.consolidate_metadata(output_path)