Source code for xcube.core.new

# The MIT License (MIT)
# Copyright (c) 2021 by the xcube development team and contributors
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import itertools

import numpy as np
import pandas as pd
import pyproj
import xarray as xr


[docs]def new_cube(title='Test Cube', width=360, height=180, x_name='lon', y_name='lat', x_dtype='float64', y_dtype=None, x_units='degrees_east', y_units='degrees_north', x_res=1.0, y_res=None, x_start=-180.0, y_start=-90.0, inverse_y=False, time_name='time', time_dtype='datetime64[s]', time_units='seconds since 1970-01-01T00:00:00', time_calendar='proleptic_gregorian', time_periods=5, time_freq="D", time_start='2010-01-01T00:00:00', use_cftime=False, drop_bounds=False, variables=None, crs=None): """ Create a new empty cube. Useful for creating cubes templates with predefined coordinate variables and metadata. The function is also heavily used by xcube's unit tests. The values of the *variables* dictionary can be either constants, array-like objects, or functions that compute their return value from passed coordinate indexes. The expected signature is::: def my_func(time: int, y: int, x: int) -> Union[bool, int, float] :param title: A title. Defaults to 'Test Cube'. :param width: Horizontal number of grid cells. Defaults to 360. :param height: Vertical number of grid cells. Defaults to 180. :param x_name: Name of the x coordinate variable. Defaults to 'lon'. :param y_name: Name of the y coordinate variable. Defaults to 'lat'. :param x_dtype: Data type of x coordinates. Defaults to 'float64'. :param y_dtype: Data type of y coordinates. Defaults to 'float64'. :param x_units: Units of the x coordinates. Defaults to 'degrees_east'. :param y_units: Units of the y coordinates. Defaults to 'degrees_north'. :param x_start: Minimum x value. Defaults to -180. :param y_start: Minimum y value. Defaults to -90. :param x_res: Spatial resolution in x-direction. Defaults to 1.0. :param y_res: Spatial resolution in y-direction. Defaults to 1.0. :param inverse_y: Whether to create an inverse y axis. Defaults to False. :param time_name: Name of the time coordinate variable. Defaults to 'time'. :param time_periods: Number of time steps. Defaults to 5. :param time_freq: Duration of each time step. Defaults to `1D'. :param time_start: First time value. Defaults to '2010-01-01T00:00:00'. :param time_dtype: Numpy data type for time coordinates. Defaults to 'datetime64[s]'. If used, parameter 'use_cftime' must be False. :param time_units: Units for time coordinates. Defaults to 'seconds since 1970-01-01T00:00:00'. :param time_calendar: Calender for time coordinates. Defaults to 'proleptic_gregorian'. :param use_cftime: If True, the time will be given as data types according to the 'cftime' package. If used, the time_calendar parameter must be also be given with an appropriate value such as 'gregorian' or 'julian'. If used, parameter 'time_dtype' must be None. :param drop_bounds: If True, coordinate bounds variables are not created. Defaults to False. :param variables: Dictionary of data variables to be added. None by default. :param crs: pyproj-compatible CRS string or instance of pyproj.CRS or None :return: A cube instance """ y_dtype = y_dtype if y_dtype is not None else y_dtype y_res = y_res if y_res is not None else x_res if width < 0 or height < 0 or x_res <= 0.0 or y_res <= 0.0: raise ValueError() if time_periods < 0: raise ValueError() if use_cftime and time_dtype is not None: raise ValueError('If "use_cftime" is True,' ' "time_dtype" must not be set.') x_is_lon = x_name == 'lon' or x_units == 'degrees_east' y_is_lat = y_name == 'lat' or y_units == 'degrees_north' x_end = x_start + width * x_res y_end = y_start + height * y_res x_res_05 = 0.5 * x_res y_res_05 = 0.5 * y_res x_data = np.linspace(x_start + x_res_05, x_end - x_res_05, width, dtype=x_dtype) y_data = np.linspace(y_start + y_res_05, y_end - y_res_05, height, dtype=y_dtype) x_var = xr.DataArray(x_data, dims=x_name, attrs=dict(units=x_units)) y_var = xr.DataArray(y_data, dims=y_name, attrs=dict(units=y_units)) if inverse_y: y_var = y_var[::-1] if x_is_lon: x_var.attrs.update(long_name='longitude', standard_name='longitude') else: x_var.attrs.update(long_name='x coordinate of projection', standard_name='projection_x_coordinate') if y_is_lat: y_var.attrs.update(long_name='latitude', standard_name='latitude') else: y_var.attrs.update(long_name='y coordinate of projection', standard_name='projection_y_coordinate') if use_cftime: time_data_p1 = xr.cftime_range(start=time_start, periods=time_periods + 1, freq=time_freq, calendar=time_calendar).values else: time_data_p1 = pd.date_range(start=time_start, periods=time_periods + 1, freq=time_freq).values time_data_p1 = time_data_p1.astype(dtype=time_dtype) time_delta = time_data_p1[1] - time_data_p1[0] time_data = time_data_p1[0:-1] + time_delta // 2 time_var = xr.DataArray(time_data, dims=time_name) time_var.encoding['units'] = time_units time_var.encoding['calendar'] = time_calendar coords = {x_name: x_var, y_name: y_var, time_name: time_var} if not drop_bounds: x_bnds_name = f'{x_name}_bnds' y_bnds_name = f'{y_name}_bnds' time_bnds_name = f'{time_name}_bnds' bnds_dim = 'bnds' x_bnds_data = np.zeros((width, 2), dtype=np.float64) x_bnds_data[:, 0] = np.linspace(x_start, x_end - x_res, width, dtype=x_dtype) x_bnds_data[:, 1] = np.linspace(x_start + x_res, x_end, width, dtype=x_dtype) y_bnds_data = np.zeros((height, 2), dtype=np.float64) y_bnds_data[:, 0] = np.linspace(y_start, y_end - x_res, height, dtype=y_dtype) y_bnds_data[:, 1] = np.linspace(y_start + x_res, y_end, height, dtype=y_dtype) if inverse_y: y_bnds_data = y_bnds_data[::-1, ::-1] x_bnds_var = xr.DataArray(x_bnds_data, dims=(x_name, bnds_dim), attrs=dict(units=x_units)) y_bnds_var = xr.DataArray(y_bnds_data, dims=(y_name, bnds_dim), attrs=dict(units=y_units)) x_var.attrs['bounds'] = x_bnds_name y_var.attrs['bounds'] = y_bnds_name time_bnds_data = np.zeros((time_periods, 2), dtype=time_data_p1.dtype) time_bnds_data[:, 0] = time_data_p1[:-1] time_bnds_data[:, 1] = time_data_p1[1:] time_bnds_var = xr.DataArray(time_bnds_data, dims=(time_name, bnds_dim)) time_bnds_var.encoding['units'] = time_units time_bnds_var.encoding['calendar'] = time_calendar time_var.attrs['bounds'] = time_bnds_name coords.update({x_bnds_name: x_bnds_var, y_bnds_name: y_bnds_var, time_bnds_name: time_bnds_var}) attrs = dict(Conventions="CF-1.7", title=title, time_coverage_start=str(time_data_p1[0]), time_coverage_end=str(time_data_p1[-1])) if x_is_lon: attrs.update(dict(geospatial_lon_min=x_start, geospatial_lon_max=x_end, geospatial_lon_units=x_units)) if y_is_lat: attrs.update(dict(geospatial_lat_min=y_start, geospatial_lat_max=y_end, geospatial_lat_units=y_units)) data_vars = {} if variables: dims = (time_name, y_name, x_name) shape = (time_periods, height, width) size = time_periods * height * width for var_name, data in variables.items(): if isinstance(data, xr.DataArray): data_vars[var_name] = data elif isinstance(data, int) \ or isinstance(data, float) \ or isinstance(data, bool): data_vars[var_name] = xr.DataArray( np.full(shape, data), dims=dims ) elif callable(data): func = data data = np.zeros(shape) for index in itertools.product(*map(range, shape)): data[index] = func(*index) data_vars[var_name] = xr.DataArray(data, dims=dims) elif data is None: data_vars[var_name] = xr.DataArray( np.random.uniform(0.0, 1.0, size).reshape(shape), dims=dims ) else: data_vars[var_name] = xr.DataArray(data, dims=dims) if isinstance(crs, str): crs = pyproj.CRS.from_string(crs) if isinstance(crs, pyproj.CRS): data_vars['crs'] = xr.DataArray(0, attrs=crs.to_cf()) return xr.Dataset(data_vars=data_vars, coords=coords, attrs=attrs)