
xcube
Release 0.2.0

Brockmann Consult GmbH

Sep 25, 2019

GETTING STARTED

1 Overview 3

2 Examples 7

3 Installation 15

4 CLI 17

5 Python API 33

6 Web API and Server 45

7 Viewer App 47

8 xcube Dataset Specification 49

9 xcube Developer Guide 53

10 Indices and tables 59

Index 61

i

ii

xcube, Release 0.2.0

Warning: This documentation is a work in progress and currently less than a draft.

xcube has been developed to generate, manipulate, analyse, and publish data cubes from EO data.

GETTING STARTED 1

xcube, Release 0.2.0

2 GETTING STARTED

CHAPTER

ONE

OVERVIEW

xcube is an open-source Python package and toolkit that has been developed to provide Earth observation (EO) data in
an analysis-ready form to users. xcube achieves this by carefully converting EO data sources into self-contained data
cubes that can be published in the cloud.

1.1 Data Cube

The interpretation of the term data cube in the EO domain usually depends on the current context. It may refer to a
data service such as Sentinel Hub, to some abstract API, or to a concrete set of spatial images that form a time-series.

This section briefly explains the specific concept of a data cube used in the xcube project - the xcube dataset.

1.2 xcube Dataset

1.2.1 Data Model

An xcube dataset contains one or more (geo-physical) data variables whose values are stored in cells of a common
multi-dimensional, spatio-temporal grid. The dimensions are usually time, latitude, and longitude, however other
dimensions may be present.

All xcube datasets are structured in the same way following a common data model. They are also self-describing
by providing metadata for the cube and all cube’s variables following the CF conventions. For details regarding the
common data model, please refer to the xcube Dataset Specification.

A xcube dataset’s in-memory representation in Python programs is an xarray.Dataset instance. Each dataset variable is
represented by multi-dimensional xarray.DataArray that is arranged in non-overlapping, contiguous sub-regions called
data chunks.

1.2.2 Data Chunks

Chunked variables allow for out-of-core computations of xcube dataset that don’t fit in a single computer’s RAM as
data chunks can be processed independently from each other.

The way how dataset variables are sub-divided into smaller chunks - their chunking - has a substantial impact on
processing performance and there is no single ideal chunking for all use cases. For time series analyses it is preferable
to have chunks with a smaller spatial dimensions and larger time dimension, for spatial analyses and visualisation on
using a map, the opposite is the case.

3

https://www.sentinel-hub.com/
http://cfconventions.org/cf-conventions/cf-conventions.html
http://xarray.pydata.org/en/stable/data-structures.html#dataset
http://xarray.pydata.org/en/stable/data-structures.html#dataarray

xcube, Release 0.2.0

xcube provide tools for re-chunking of xcube datasets (xcube chunk, xcube level) and the xcube server (xcube serve)
allows serving the same data cubes using different chunkings. For further reading have a look into the Chunking and
Performance section of the xarray documentation.

1.2.3 Processing Model

When xcube datasets are opened, only the cube’s structure and its metadata are loaded into memory. The actual data
arrays of variables are loaded on-demand only, and only for chunks intersecting the desired sub-region.

Operations that generate new data variables from existing ones will be chunked in the same way. Therefore, such
operation chains generate a processing graph providing a deferred, concurrent execution model.

1.2.4 Data Format

For the external, physical representation of xcube datasets we usually use the Zarr format. Zarr takes full advantage of
data chunks and supports parallel processing of chunks that may originate from the local file system or from remote
cloud storage such as S3 and GCS.

1.2.5 Python Packages

The xcube package builds heavily on Python’s big data ecosystem for handling huge N-dimensional data arrays and
exploiting cloud-based storage and processing resources. In particular, xcube’s in-memory data model is provided by
xarray, the memory management and processing model is provided through dask, and the external format is provided
by zarr. xarray, dask, and zarr have increased their popularity for big data solutions over the last couple of years, for
creating scalable and efficient EO data solutions.

1.3 Toolkit

On top of xarray, dask, zarr, and other popular Python data science packages, xcube provides various higher-level
tools to generate, manipulate, and publish xcube datasets:

• CLI - access, generate, modify, and analyse xcube datasets using the xcube tool;

• Python API - access, generate, modify, and analyse xcube datasets via Python programs and notebooks;

• Web API and Server - access, analyse, visualize xcube datasets via an xcube server;

• Viewer App – publish and visualise xcube datasets using maps and time-series charts.

1.4 Workflows

The basic use case is to generate an xcube dataset and deploy it so that your users can access it:

1. generate an xcube dataset from some EO data sources using the xcube gen tool with a specific input processor.

2. optimize the generated xcube dataset with respect to specific use cases using the xcube chunk tool.

3. optimize the generated xcube dataset by consolidating metadata and elimination of empty chunks using xcube
optimize and xcube prune tools.

4. deploy the optimized xcube dataset(s) to some location (e.g. on AWS S3) where users can access them.

Then you can:

4 Chapter 1. Overview

http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance
http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance
https://zarr.readthedocs.io/en/stable/spec/v2.html
http://xarray.pydata.org/
https://dask.readthedocs.io/
https://zarr.readthedocs.io/
http://xarray.pydata.org/
https://dask.readthedocs.io/
https://zarr.readthedocs.io/

xcube, Release 0.2.0

5. access, analyse, modify, transform, visualise the data using the Python API and xarray API through Python
programs or JupyterLab, or

6. extract data points by coordinates from a cube using the xcube extract tool, or

7. resample the cube in time to generate temporal aggregations using the xcube resample tool.

Another way to provide the data to users is via the xcube server, that provides a RESTful API and a WMTS. The latter
is used to visualise spatial subsets of xcube datasets efficiently at any zoom level. To provide optimal visualisation and
data extraction performance through the xcube server, xcube datasets may be prepared beforehand. Steps 8 to 10 are
optional.

8. verify a dataset to be published conforms with the xcube Dataset Specification using the xcube verify tool.

9. adjust your dataset chunking to be optimal for generating spatial image tiles and generate a multi-resolution
image pyramid using the xcube chunk and xcube level tools.

10. create a dataset variant optimal for time series-extraction again using the xcube chunk tool.

11. configure xcube datasets and publish them through the xcube server using the xcube serve tool.

You may then use a WMTS-compatible client to visualise the datasets or develop your own xcube server client that
will make use of the xcube’s REST API.

The easiest way to visualise your data is using the xcube Viewer App, a single-page web application that can be
configured to work with xcube server URLs.

1.4. Workflows 5

http://xarray.pydata.org/en/stable/api.html
https://jupyterlab.readthedocs.io/
https://en.wikipedia.org/wiki/Web_Map_Tile_Service

xcube, Release 0.2.0

6 Chapter 1. Overview

CHAPTER

TWO

EXAMPLES

When you follow the examples section you can build your first tiny xcube dataset and view it in the xcube-viewer by
using the xcube server. The examples section is still growing and improving :)

Have fun exploring xcube!

Warning: This chapter is a work in progress and currently less than a draft.

2.1 Generating an xcube dataset

In the following example a tiny demo xcube dataset is generated.

2.1.1 Analysed Sea Surface Temperature over the Global Ocean

Input data for this example is located in the xcube repository. The input files contain analysed sea surface temperature
and sea surface temperature anomaly over the global ocean and are provided by Copernicus Marine Environment
Monitoring Service. The data is described in a dedicated Product User Manual.

Before starting the example, you need to activate the xcube environment:

$ conda activate xcube

If you want to take a look at the input data you can use cli/xcube dump to print out the metadata of a selected input
file:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-
→˓v02.0-fv02.0.nc

<xarray.Dataset>
Dimensions: (lat: 720, lon: 1440, time: 1)
Coordinates:

* lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875

* lon (lon) float32 0.125 0.375 0.625 ... 359.375 359.625 359.875

* time (time) object 2017-06-05 12:00:00
Data variables:

sst_anomaly (time, lat, lon) float32 ...
analysed_sst (time, lat, lon) float32 ...

Attributes:
Conventions: CF-1.4
title: Global SST & Sea Ice Anomaly, L4 OSTIA, 0.25 ...

(continues on next page)

7

https://github.com/dcs4cop/xcube/tree/master/examples/gen/data
http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://resources.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-001.pdf

xcube, Release 0.2.0

(continued from previous page)

summary: A merged, multi-sensor L4 Foundation SST anom...
references: Donlon, C.J., Martin, M., Stark, J.D., Robert...
institution: UKMO
history: Created from sst:temperature regridded with a...
comment: WARNING Some applications are unable to prope...
license: These data are available free of charge under...
id: UKMO-L4LRfnd_GLOB-OSTIAanom
naming_authority: org.ghrsst
product_version: 2.0
uuid: 5c1665b7-06e8-499d-a281-857dcbfd07e2
gds_version_id: 2.0
netcdf_version_id: 3.6
date_created: 20170606T061737Z
start_time: 20170605T000000Z
time_coverage_start: 20170605T000000Z
stop_time: 20170606T000000Z
time_coverage_end: 20170606T000000Z
file_quality_level: 3
source: UKMO-L4HRfnd-GLOB-OSTIA
platform: Aqua, Envisat, NOAA-18, NOAA-19, MetOpA, MSG1...
sensor: AATSR, AMSR, AVHRR, AVHRR_GAC, SEVIRI, TMI
metadata_conventions: Unidata Observation Dataset v1.0
metadata_link: http://data.nodc.noaa.gov/NESDIS_DataCenters/...
keywords: Oceans > Ocean Temperature > Sea Surface Temp...
keywords_vocabulary: NASA Global Change Master Directory (GCMD) Sc...
standard_name_vocabulary: NetCDF Climate and Forecast (CF) Metadata Con...
westernmost_longitude: 0.0
easternmost_longitude: 360.0
southernmost_latitude: -90.0
northernmost_latitude: 90.0
spatial_resolution: 0.25 degree
geospatial_lat_units: degrees_north
geospatial_lat_resolution: 0.25 degree
geospatial_lon_units: degrees_east
geospatial_lon_resolution: 0.25 degree
acknowledgment: Please acknowledge the use of these data with...
creator_name: Met Office as part of CMEMS
creator_email: servicedesk.cmems@mercator-ocean.eu
creator_url: http://marine.copernicus.eu/
project: Group for High Resolution Sea Surface Tempera...
publisher_name: GHRSST Project Office
publisher_url: http://www.ghrsst.org
publisher_email: ghrsst-po@nceo.ac.uk
processing_level: L4
cdm_data_type: grid

Below an example xcube dataset will be created, which will contain the variable analysed_sst. The metadata for a
specific variable can be viewed by:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-
→˓v02.0-fv02.0.nc --var analysed_sst

<xarray.DataArray 'analysed_sst' (time: 1, lat: 720, lon: 1440)>
[1036800 values with dtype=float32]
Coordinates:

* lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875

(continues on next page)

8 Chapter 2. Examples

xcube, Release 0.2.0

(continued from previous page)

* lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.375 359.625 359.875

* time (time) object 2017-06-05 12:00:00
Attributes:

long_name: analysed sea surface temperature
standard_name: sea_surface_foundation_temperature
type: foundation
units: kelvin
valid_min: -300
valid_max: 4500
source: UKMO-L4HRfnd-GLOB-OSTIA
comment:

For creating a toy xcube dataset you can execute the command-line below. Please adjust the paths to your needs:

$ xcube gen -o "your/output/path/demo_SST_xcube.zarr" -c examples/gen/config_files/
→˓xcube_sst_demo_config.yml --sort examples/gen/data/*.nc

The configuration file specifies the input processor, which in this case is the default one. The output size is 10240,
5632. The bounding box of the data cube is given by output_region in the configuration file. The output format
(output_writer_name) is defined as well. The chunking of the dimensions can be set by the chunksizes
attribute of the output_writer_params parameter, and in the example configuration file the chunking is set for
latitude and longitude. If the chunking is not set, a automatic chunking is applied. The spatial resampling method
(output_resampling) is set to ‘nearest’ and the configuration file contains only one variable which will be in-
cluded into the xcube dataset - ‘analysed-sst’.

The Analysed Sea Surface Temperature data set contains the variable already as needed. This means no pixel masking
needs to be applied. However, this might differ depending on the input data. You can take a look at a configuration
file which takes Sentinel-3 Ocean and Land Colour Instrument (OLCI) as input files, which is a bit more complex.
The advantage of using pixel expressions is, that the generated cube contains only valid pixels and the user of the data
cube does not have to worry about something like land-masking or invalid values. Furthermore, the generated data
cube is spatially regular. This means the data are aligned on a common spatial grid and cover the same region. The
time stamps are kept from the input data set.

Caution: If you have input data that has file names not only varying with the time stamp but with e.g. A and B as
well, you need to pass the input files in the desired order via a text file. Each line of the text file should contain the
path to one input file. If you pass the input files in a desired order, then do not use the parameter --sort within the
commandline interface.

2.1.2 Optimizing and pruning a xcube dataset

If you want to optimize your generated xcube dataset e.g. for publishing it in a xcube viewer via xcube serve you can
use cli/xcube optimize:

$ xcube optimize demo_SST_xcube.zarr -C

By executing the command above, an optimized xcube dataset called demo_SST_xcube-optimized.zarr will be created.
You can take a look into the directory of the original xcube dataset and the optimized one, and you will notice that a file
called .zmetadata. .zmetadata contains the information stored in .zattrs and .zarray of each variable of the xcube dataset
and makes requests of metadata faster. The option -C optimizes coordinate variables by converting any chunked arrays
into single, non-chunked, contiguous arrays.

For deleting empty chunks cli/xcube prune can be used. It deletes all data files associated with empty (NaN-only)
chunks of an xcube dataset, and is restricted to the ZARR format.

2.1. Generating an xcube dataset 9

https://github.com/dcs4cop/xcube/tree/master/examples/gen/config_files/xcube_sst_demo_config.yml
https://github.com/dcs4cop/xcube/tree/master/examples/gen/config_files/xcube_olci_demo_config.yml
https://github.com/dcs4cop/xcube/tree/master/examples/gen/config_files/xcube_olci_demo_config.yml

xcube, Release 0.2.0

$ xcube prune demo_SST_xcube-optimized.zarr

The pruned xcube dataset is saved in place and does not need an output path. The size of the xcube dataset was 6,8 MB
before pruning it and 6,5 MB afterwards. According to the output printed to the terminal, 30 block files were deleted.

The metadata of the xcube dataset can be viewed with cli/xcube dump as well:

$ xcube dump demo_SST_xcube-optimized.zarr

<xarray.Dataset>
Dimensions: (bnds: 2, lat: 5632, lon: 10240, time: 3)
Coordinates:

* lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.0 48.0
lat_bnds (lat, bnds) float64 dask.array<shape=(5632, 2), chunksize=(5632, 2)>

* lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.67
lon_bnds (lon, bnds) float64 dask.array<shape=(10240, 2), chunksize=(10240,

→˓2)>

* time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00
time_bnds (time, bnds) datetime64[ns] dask.array<shape=(3, 2), chunksize=(3,

→˓2)>
Dimensions without coordinates: bnds
Data variables:

analysed_sst (time, lat, lon) float64 dask.array<shape=(3, 5632, 10240),
→˓chunksize=(1, 704, 640)>
Attributes:

acknowledgment: Data Cube produced based on data provided by ...
comment:
contributor_name:
contributor_role:
creator_email: info@brockmann-consult.de
creator_name: Brockmann Consult GmbH
creator_url: https://www.brockmann-consult.de
date_modified: 2019-09-25T08:50:32.169031
geospatial_lat_max: 62.666666666666664
geospatial_lat_min: 48.0
geospatial_lat_resolution: 0.002604166666666666
geospatial_lat_units: degrees_north
geospatial_lon_max: 10.666666666666664
geospatial_lon_min: -16.0
geospatial_lon_resolution: 0.0026041666666666665
geospatial_lon_units: degrees_east
history: xcube/reproj-snap-nc
id: demo-bc-sst-sns-l2c-v1
institution: Brockmann Consult GmbH
keywords:
license: terms and conditions of the DCS4COP data dist...
naming_authority: bc
processing_level: L2C
project: xcube
publisher_email: info@brockmann-consult.de
publisher_name: Brockmann Consult GmbH
publisher_url: https://www.brockmann-consult.de
references: https://dcs4cop.eu/
source: CMEMS Global SST & Sea Ice Anomaly Data Cube
standard_name_vocabulary:
summary:
time_coverage_end: 2017-06-08T00:00:00.000000000

(continues on next page)

10 Chapter 2. Examples

xcube, Release 0.2.0

(continued from previous page)

time_coverage_start: 2017-06-05T00:00:00.000000000
title: CMEMS Global SST Anomaly Data Cube

The metadata for the variable analysed_sst can be viewed:

$ xcube dump demo_SST_xcube-optimized.zarr --var analysed_sst

<xarray.DataArray 'analysed_sst' (time: 3, lat: 5632, lon: 10240)>
dask.array<shape=(3, 5632, 10240), dtype=float64, chunksize=(1, 704, 640)>
Coordinates:

* lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.01 48.0 48.0

* lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.66 10.67

* time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00
Attributes:

comment:
long_name: analysed sea surface temperature
source: UKMO-L4HRfnd-GLOB-OSTIA
spatial_resampling: Nearest
standard_name: sea_surface_foundation_temperature
type: foundation
units: kelvin
valid_max: 4500
valid_min: -300

Warning: This chapter is a work in progress and currently less than a draft.

2.2 Publishing xcube datasets

This example demonstrates how to run an xcube server to publish existing xcube datasets.

2.2.1 Running the server

To run the server on default port 8080 using the demo configuration:

$ xcube serve --verbose -c examples/serve/demo/config.yml

To run the server using a particular xcube dataset path and styling information for a variable:

$ xcube serve --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-1-250-250.
→˓zarr

2.2.2 Test it

After starting the server, check the various functions provided by xcube Web API.

• Datasets:

– Get datasets

– Get dataset details

2.2. Publishing xcube datasets 11

http://localhost:8080/datasets
http://localhost:8080/datasets/local

xcube, Release 0.2.0

– Get dataset coordinates

• Color bars:

– Get color bars

– Get color bars (HTML)

• WMTS:

– Get WMTS KVP Capabilities (XML)

– Get WMTS KVP local tile (PNG)

– Get WMTS KVP remote tile (PNG)

– Get WMTS REST Capabilities (XML)

– Get WMTS REST local tile (PNG)

– Get WMTS REST remote tile (PNG)

• Tiles

– Get tile (PNG)

– Get tile grid for OpenLayers 4.x

– Get tile grid for Cesium 1.x

– Get legend for layer (PNG)

• Time series service (preliminary & unstable, will likely change soon)

– Get time stamps per dataset

– Get time series for single point

• Places service (preliminary & unstable, will likely change soon>‘_

– Get all features

– Get all features of collection “inside-cube”

– Get all features for dataset “local”

– Get all features of collection “inside-cube” for dataset “local”

2.2.3 xcube Viewer

xcube datasets published through xcube serve can be visualised using the xcube-viewer web application. To do
so, run xcube serve with the --show flag.

In order make this option usable, xcube-viewer must be installed and build:

1. Download and install yarn.

2. Download and build xcube-viewer:

$ git clone https://github.com/dcs4cop/xcube-viewer.git
$ cd xcube-viewer
$ yarn build

3. Configure xcube serve so it finds the xcube-viewer On Linux (please adjust path):

12 Chapter 2. Examples

http://localhost:8080/datasets/local/coords/time
http://localhost:8080/colorbars
http://localhost:8080/colorbars.html
http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetCapabilities
http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetTile&Version=1.0.0&Layer=local.conc_chl&TileMatrix=0&TileRow=0&TileCol=0&Format=image/png
http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetTile&Version=1.0.0&Layer=remote.conc_chl&TileMatrix=0&TileRow=0&TileCol=0&Format=image/png
http://localhost:8080/wmts/1.0.0/WMTSCapabilities.xml
http://localhost:8080/wmts/1.0.0/tile/local/conc_chl/0/0/1.png
http://localhost:8080/wmts/1.0.0/tile/remote/conc_chl/0/0/1.png
http://localhost:8080/datasets/local/vars/conc_chl/tiles/0/1/0.png
http://localhost:8080/datasets/local/vars/conc_chl/tilegrid?tiles=ol4
http://localhost:8080/datasets/local/vars/conc_chl/tilegrid?tiles=cesium
http://localhost:8080/datasets/local/vars/conc_chl/legend.png
http://localhost:8080/ts
http://localhost:8080/ts/local/conc_chl/point?lat=51.4&lon=2.1&startDate=2017-01-15&endDate=2017-01-29
http://localhost:8080/places/all
http://localhost:8080/features/inside-cube
http://localhost:8080/places/all/local
http://localhost:8080/places/inside-cube/local
https://github.com/dcs4cop/xcube-viewer/
https://yarnpkg.com/lang/en/

xcube, Release 0.2.0

$ export XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

On Windows (please adjust path):

> SET XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

4. Then run xcube serve --show:

$ xcube serve --show --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-1-
→˓250-250.zarr

Viewing the generated xcube dataset described in the example Generating an xcube dataset:

$ xcube serve --show --styles "analysed_sst=(280,290,'plasma')" demo_SST_xcube-
→˓optimized.zarr

In case you get an error message “cannot reach server” on the very bottom of the web app’s main window, refresh the
page.

You can play around with the value range displayed in the viewer, here it is set to min=280K and max=290K. The
colormap used for mapping can be modified as well and the colormaps provided by matplotlib can be used.

2.2.4 Other clients

There are example HTML pages for some tile server clients. They need to be run in a web server. If you don’t have
one, you can use Node’s httpserver:

$ npm install -g httpserver

After starting both the xcube server and web server, e.g. on port 9090:

$ httpserver -d -p 9090

you can run the client demos by following their links given below.

2.2. Publishing xcube datasets 13

https://matplotlib.org/examples/color/colormaps_reference.html

xcube, Release 0.2.0

OpenLayers

• OpenLayers 4 Demo

• OpenLayers 4 Demo with WMTS

Cesium

To run the Cesium Demo first download Cesium and unpack the zip into the xcube serve source directory so that
there exists an ./Cesium-x.y.z sub-directory. You may have to adapt the Cesium version number in the demo’s
HTML file.

14 Chapter 2. Examples

http://localhost:9090/examples/serve/demo/index-ol4.html
http://localhost:9090/examples/serve/demo/index-ol4-wmts.html
http://localhost:9090/examples/serve/demo/index-cesium.html
https://cesiumjs.org/downloads/
https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/index-cesium.html
https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/index-cesium.html

CHAPTER

THREE

INSTALLATION

3.1 Installation using conda

Into existing conda environment (>= Python 3.7)

$ git install -c conda-forge xcube

Into new conda environment

$ git create -c conda-forge -n xcube python3
$ git install -c conda-forge xcube

3.2 Installation from sources

First

$ git clone https://github.com/dcs4cop/xcube.git
$ cd xcube
$ conda env create

Then

$ activate xcube
$ python setup.py develop

Update

$ activate xcube
$ git pull --force
$ python setup.py develop

Run tests

$ pytest

with coverage

$ pytest --cov=xcube

with coverage report in HTML

15

https://pytest-cov.readthedocs.io/en/latest/reporting.html

xcube, Release 0.2.0

$ pytest --cov-report html --cov=xcube

3.3 Docker

To start a demo using docker use the following commands

$ docker build -t [your name] .
$ docker run -d -p [host port]:8000 [your name]

Example:

$ docker build -t xcube:0.1.0dev6 .
$ docker run -d -p 8001:8000 xcube:0.1.0dev6
$ docker ps

16 Chapter 3. Installation

CHAPTER

FOUR

CLI

The xcube command-line interface (CLI) is a single executable cli/xcube with several sub-commands comprising
functions ranging from xcube dataset generation, over analysis and manipulation, to dataset publication.

4.1 Common Arguments and Options

Most of the commands operate on inputs that are xcube datasets. Such inputs are consistently named CUBE and
provided as one or more command arguments. CUBE inputs may be a path into the local file system or a path into
some object storage bucket, e.g. in AWS S3. Command inputs of other types are consistently called INPUT.

Many commands also output something, i.e. are writing files. The paths or names of such outputs are consistently
provided by the -o OUTPUT or --output OUTPUT option. As the output is an option, there is usually a default
value for it. If multiply file formats are supported, commands usually provide a -f FORMAT or --format FORMAT
option. If omitted, the format may be guessed from the output’s name.

4.2 Cube generation

4.2.1 xcube gen

Synopsis

Generate xcube dataset.

$ xcube gen --help

Usage: xcube gen [OPTIONS] [INPUT]...

Generate xcube dataset. Data cubes may be created in one go or
successively for all given inputs. Each input is expected to provide a
single time slice which may be appended, inserted or which may replace an
existing time slice in the output dataset. The input paths may be one or
more input files or a pattern that may contain wildcards '?', '*', and
'**'. The input paths can also be passed as lines of a text file. To do
so, provide exactly one input file with ".txt" extension which contains
the actual input paths to be used.

Options:
-P, --proc INPUT-PROCESSOR Input processor name. The available input

processor names and additional information

(continues on next page)

17

xcube, Release 0.2.0

(continued from previous page)

about input processors can be accessed by
calling xcube gen --info . Defaults to
"default", an input processor that can deal
with simple datasets whose variables have
dimensions ("lat", "lon") and conform with
the CF conventions.

-c, --config CONFIG xcube dataset configuration file in YAML
format. More than one config input file is
allowed.When passing several config files,
they are merged considering the order passed
via command line.

-o, --output OUTPUT Output path. Defaults to 'out.zarr'
-f, --format FORMAT Output format. Information about output

formats can be accessed by calling xcube gen
--info. If omitted, the format will be
guessed from the given output path.

-S, --size SIZE Output size in pixels using format
"<width>,<height>".

-R, --region REGION Output region using format "<lon-min>,<lat-
min>,<lon-max>,<lat-max>"

--variables, --vars VARIABLES Variables to be included in output. Comma-
separated list of names which may contain
wildcard characters "*" and "?".

--resampling
→˓[Average|Bilinear|Cubic|CubicSpline|Lanczos|Max|Median|Min|Mode|Nearest|Q1|Q3]

Fallback spatial resampling algorithm to be
used for all variables. Defaults to
'Nearest'. The choices for the resampling
algorithm are: ['Average', 'Bilinear',
'Cubic', 'CubicSpline', 'Lanczos', 'Max',
'Median', 'Min', 'Mode', 'Nearest', 'Q1',
'Q3']

-a, --append Deprecated. The command will now always
create, insert, replace, or append input
slices.

--prof Collect profiling information and dump
results after processing.

--sort The input file list will be sorted before
creating the xcube dataset. If --sort
parameter is not passed, order of input list
will be kept.

-I, --info Displays additional information about format
options or about input processors.

--dry_run Just read and process inputs, but don't
produce any outputs.

--help Show this message and exit.

Below is the ouput of a xcube gen --info call showing five input processors installed via plugins.

$ xcube gen --info

input processors to be used with option --proc:
default Single-scene NetCDF/CF inputs in xcube standard

→˓format
rbins-seviri-highroc-scene-l2 RBINS SEVIRI HIGHROC single-scene Level-2 NetCDF

→˓inputs

(continues on next page)

18 Chapter 4. CLI

xcube, Release 0.2.0

(continued from previous page)

rbins-seviri-highroc-daily-l2 RBINS SEVIRI HIGHROC daily Level-2 NetCDF inputs
snap-olci-highroc-l2 SNAP Sentinel-3 OLCI HIGHROC Level-2 NetCDF inputs
snap-olci-cyanoalert-l2 SNAP Sentinel-3 OLCI CyanoAlert Level-2 NetCDF

→˓inputs
vito-s2plus-l2 VITO Sentinel-2 Plus Level 2 NetCDF inputs

For more input processors use existing "xcube-gen-..." plugins from the github
→˓organisation DCS4COP or write own plugin.

output formats to be used with option --format:
csv (*.csv) CSV file format
mem (*.mem) In-memory dataset I/O
netcdf4 (*.nc) NetCDF-4 file format
zarr (*.zarr) Zarr file format (http://zarr.readthedocs.io)

Configuration File

Configuration files passed to xcube gen via the -c, --config option use YAML format. Multiple configuration
files may be given. In this case all configurations are merged into a single one. Parameter values will be overwritten
by subsequent configurations if they are scalars. If they are objects / mappings, their values will be deeply merged.

The following parameters can be used in the configuration files:

input_processor [str] The name of an input processor. See -P, --proc option above.

Default The default value is 'default', xcube’s default input processor. It can ingest and process
inputs that

• use an EPSG:4326 (or compatible) grid;

• have 1-D lon and lat coordinate variables using WGS84 coordinates and decimal degrees;

• have a decodable 1-D time coordinate or define the one of the following global at-
tribute pairs time_coverage_start and time_coverage_end, time_start and
time_end or time_stop;

• provide data variables with the dimensions time, lat, lon, in this order.

• conform to the ‘CF Conventions‘_.

output_size [[int, int]] The spatial dimension sizes of the output dataset given as number of grid cells in longitude
and latitude direction (width and height).

output_region [[float, float, float, float]] The spatial extent of output datasets given as a bounding box [lat-min,
lat-min, lon-max, lat-max] using decimal degrees.

output_variables [[variable-definitions]] The definition of variables that will be included in the output dataset.
Each variable definition may be just a name or a mapping from a name to variable attributes. If it is just a name
it must be the name of an existing variable either in the INPUT or in processed_variables. If the variable
definition is a mapping, some of the attributes affect the way how variables are processed. All but the name
attributes become variable metadata in the output.

name [str] The new name of the variable in the output.

valid_pixel_expression [str] An expression used to mask this variable, see Expressions. The expres-
sion identifies all valid pixels in each INPUT.

resampling [str] The resampling method used. See --resampling option above.

4.2. Cube generation 19

https://en.wikipedia.org/wiki/YAML

xcube, Release 0.2.0

Default By default, all variables in INPUT will occur in output.

processed_variables [[variable-definitions]] The definition of variables that will be produced or pro-
cessed after reading each INPUT. The main purpose is to generate intermediate variables that can
be referred to in the expression in other variable definitions in processed_variables and
valid_pixel_expression in variable definitions in output_variables. The following attributes
are recognised:

expression [str] An expression used to produce this variable, see Expressions.

output_writer_name [str] The name of a supported output format. May be one of 'zarr', 'netcdf4',
'mem'.

Default 'zarr'

output_writer_params [str] A mapping that defines parameters that are passed to output writer denoted by
output_writer_name.

output_metadata [[attribute-definitions]] General metadata that will be present in the output dataset as global
attributes. You can put any common CF attributes here.

Any attributes that are mappings will be “flattened” by concatenating the attribute names using the underscrore
character. For example,:

publisher:
name: "Brockmann Consult GmbH"
url: "https://www.brockmann-consult.de"

will create the two entries:

publisher_name: "Brockmann Consult GmbH"
publisher_url: "https://www.brockmann-consult.de"

Expressions

Expressions are plain text values of the expression and valid_pixel_expression attributes of the variable
definitions in the processed_variables and output_variables parameters. The expression syntax is that
of standard Python. xcube gen uses expressions to produce new variables listed in processed_variables and
to mask variables by the valid_pixel_expression.

An expression may refer any variables in the INPUT datasets and any variables defined by the
processed_variables parameter. Expressions may make use of most of the standard Python operators and
may apply all numpy ufuncs to referred variables. Also most of the xarray.DataArray API may be used on variables
within an expression.

In order to utilise flagged variables, the syntax variable_name.flag_name can be used in expressions. Accord-
ing to the CF Conventions, flagged variables are variables whose metadata include the attributes flag_meanings
and flag_values and/or flag_masks. The flag_meanings attribute enumerates the allowed values for
flag_name. The flag attributes must be present in the variables of each INPUT.

Example

An example that uses a configuration file only:

$ xcube gen --config ./config.yml /data/eo-data/SST/2018/**/*.nc

An example that uses the default input processor and passes all other configuration via command-line options:

20 Chapter 4. CLI

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#attribute-appendix
https://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://xarray.pydata.org/en/stable/api.html#dataarray
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#flags

xcube, Release 0.2.0

$ xcube gen -S 2000,1000 -R 0,50,5,52.5 --vars conc_chl,conc_tsm,kd489,c2rcc_flags,
→˓quality_flags -o hiroc-cube.zarr /data/eo-data/SST/2018/**/*.nc

Some input processors have been developed for specific EO data sources used within the DCS4COP project. They
may serve as examples how to develop input processor plug-ins:

• xcube-gen-rbins

• xcube-gen-bc

• xcube-gen-vito

Python API

The related Python API function is xcube.api.gen_cube().

4.2.2 xcube grid

Attention: This tool will likely change in the near future.

Synopsis

Find spatial xcube dataset resolutions and adjust bounding boxes.

$ xcube grid --help

Usage: xcube grid [OPTIONS] COMMAND [ARGS]...

Find spatial xcube dataset resolutions and adjust bounding boxes.

We find suitable resolutions with respect to a possibly regional fixed
Earth grid and adjust regional spatial bounding boxes to that grid. We
also try to select the resolutions such that they are taken from a certain
level of a multi-resolution pyramid whose level resolutions increase by a
factor of two.

The graticule at a given resolution level L within the grid is given by

RES(L) = COVERAGE * HEIGHT(L)
HEIGHT(L) = HEIGHT_0 * 2 ^ L
LON(L, I) = LON_MIN + I * HEIGHT_0 * RES(L)
LAT(L, J) = LAT_MIN + J * HEIGHT_0 * RES(L)

With

RES: Grid resolution in degrees.
HEIGHT: Number of vertical grid cells for given level
HEIGHT_0: Number of vertical grid cells at lowest resolution level.

Let WIDTH and HEIGHT be the number of horizontal and vertical grid cells
of a global grid at a certain LEVEL with WIDTH * RES = 360 and HEIGHT *
RES = 180, then we also force HEIGHT = TILE * 2 ^ LEVEL.

(continues on next page)

4.2. Cube generation 21

https://github.com/dcs4cop/xcube-gen-rbins
https://github.com/dcs4cop/xcube-gen-bc
https://github.com/dcs4cop/xcube-gen-vito

xcube, Release 0.2.0

(continued from previous page)

Options:
--help Show this message and exit.

Commands:
abox Adjust a bounding box to a fixed Earth grid.
levels List levels for a resolution or a tile size.
res List resolutions close to a target resolution.

Example: Find suitable target resolution for a ~300m (Sentinel 3 OLCI FR resolution) fixed Earth grid within a
deviation of 5%.

$ xcube grid res 300m -D 5%

TILE LEVEL HEIGHT INV_RES RES (deg) RES (m), DELTA_RES (%)
540 7 69120 384 0.0026041666666666665 289.9 -3.4
4140 4 66240 368 0.002717391304347826 302.5 0.8
8100 3 64800 360 0.002777777777777778 309.2 3.1
...

289.9m is close enough and provides 7 resolution levels, which is good. Its inverse resolution is 384, which is the
fixed Earth grid identifier.

We want to see if the resolution pyramid also supports a resolution close to 10m (Sentinel 2 MSI resolution).

$ xcube grid levels 384 -m 6

LEVEL HEIGHT INV_RES RES (deg) RES (m)
0 540 3 0.3333333333333333 37106.5
1 1080 6 0.16666666666666666 18553.2
2 2160 12 0.08333333333333333 9276.6
...
11 1105920 6144 0.00016276041666666666 18.1
12 2211840 12288 8.138020833333333e-05 9.1
13 4423680 24576 4.0690104166666664e-05 4.5

This indicates we have a resolution of 9.1m at level 12.

Lets assume we have xcube dataset region with longitude from 0 to 5 degrees and latitudes from 50 to 52.5 degrees.
What is the adjusted bounding box on a fixed Earth grid with the inverse resolution 384?

$ xcube grid abox 0,50,5,52.5 384

Orig. box coord. = 0.0,50.0,5.0,52.5
Adj. box coord. = 0.0,49.21875,5.625,53.4375
Orig. box WKT = POLYGON ((0.0 50.0, 5.0 50.0, 5.0 52.5, 0.0 52.5, 0.0 50.0))
Adj. box WKT = POLYGON ((0.0 49.21875, 5.625 49.21875, 5.625 53.4375, 0.0 53.4375,
→˓ 0.0 49.21875))
Grid size = 2160 x 1620 cells
with

TILE = 540
LEVEL = 7
INV_RES = 384
RES (deg) = 0.0026041666666666665
RES (m) = 289.89450727414993

Note, to check bounding box WKTs, you can use the handy Wicket tool.

22 Chapter 4. CLI

https://arthur-e.github.io/Wicket/sandbox-gmaps3.html

xcube, Release 0.2.0

4.3 Cube inspection

4.3.1 xcube dump

Synopsis

Dump contents of a dataset.

$ xcube dump --help

Usage: xcube dump [OPTIONS] INPUT

Dump contents of an input dataset.

Options:
--variable, --var VARIABLE

Name of a variable (multiple allowed).
-E, --encoding Dump also variable encoding information.
--help Show this message and exit.

Example

$ xcube dump xcube_cube.zarr

4.3.2 xcube verify

Synopsis

Perform cube verification.

$ xcube verify --help

Usage: xcube verify [OPTIONS] CUBE

Perform cube verification.

The tool verifies that CUBE

* defines the dimensions "time", "lat", "lon";

* has corresponding "time", "lat", "lon" coordinate variables and that they
are valid, e.g. 1-D, non-empty, using correct units;

* has valid bounds variables for "time", "lat", "lon" coordinate
variables, if any;

* has any data variables and that they are valid, e.g. min. 3-D, all have
same dimensions, have at least dimensions "time", "lat", "lon".

If INPUT is a valid xcube dataset, the tool returns exit code 0. Otherwise a
violation report is written to stdout and the tool returns exit code 3.

Options:
--help Show this message and exit.

4.3. Cube inspection 23

xcube, Release 0.2.0

Python API

The related Python API functions are xcube.api.verify_cube() and xcube.api.assert_cube().

4.4 Cube data extraction

4.4.1 xcube extract

Synopsis

Extract cube points.

$ xcube extract --help

Usage: xcube extract [OPTIONS] CUBE POINTS

Extract data points from an xcube dataset.

Extracts data cells from CUBE at coordinates given in each POINTS record
and writes the resulting values to given output path and format.

POINTS must be a CSV file that provides at least the columns "lon", "lat",
and "time". The "lon" and "lat" columns provide a point's location in
decimal degrees. The "time" column provides a point's date or date-time.
Its format should preferably be ISO, but other formats may work as well.

Options:
-o, --output OUTPUT Output path. If omitted, output is written to stdout.
-f, --format FORMAT Output format. Currently, only 'csv' is supported.
-C, --coords Include cube cell coordinates in output.
-B, --bounds Include cube cell coordinate boundaries (if any) in

output.
-I, --indexes Include cube cell indexes in output.
-R, --refs Include point values as reference in output.
--help Show this message and exit.

Example

$ xcube extract xcube_cube.zarr -o point_data.csv -Cb --indexes --refs

Python API

Related Python API functions are xcube.api.get_cube_values_for_points(), xcube.api.
get_cube_point_indexes(), and xcube.api.get_cube_values_for_indexes().

4.5 Cube manipulation

4.5.1 xcube chunk

24 Chapter 4. CLI

xcube, Release 0.2.0

Synopsis

(Re-)chunk xcube dataset.

$ xcube chunk --help

Usage: xcube chunk [OPTIONS] CUBE

(Re-)chunk xcube dataset. Changes the external chunking of all variables
of CUBE according to CHUNKS and writes the result to OUTPUT.

Options:
-o, --output OUTPUT Output path. Defaults to 'out.zarr'
-f, --format FORMAT Format of the output. If not given, guessed from

OUTPUT.
-p, --params PARAMS Parameters specific for the output format. Comma-

separated list of <key>=<value> pairs.
-C, --chunks CHUNKS Chunk sizes for each dimension. Comma-separated list of

<dim>=<size> pairs, e.g. "time=1,lat=270,lon=270"
--help Show this message and exit.

Example

$ xcube chunk input_not_chunked.zarr -o output_rechunked.zarr --chunks "time=1,
→˓lat=270,lon=270"

Python API

The related Python API function is xcube.api.chunk_dataset().

4.5.2 xcube level

Synopsis

Generate multi-resolution levels.

$ xcube level --help

Usage: xcube level [OPTIONS] INPUT

Generate multi-resolution levels. Transform the given dataset by INPUT
into the levels of a multi-level pyramid with spatial resolution
decreasing by a factor of two in both spatial dimensions and write the
result to directory OUTPUT.

Options:
-o, --output OUTPUT Output path. If omitted, "INPUT.levels" will

be used.
-L, --link Link the INPUT instead of converting it to a

level zero dataset. Use with care, as the
INPUT's internal spatial chunk sizes may be
inappropriate for imaging purposes.

(continues on next page)

4.5. Cube manipulation 25

xcube, Release 0.2.0

(continued from previous page)

-t, --tile-size TILE-SIZE Tile size, given as single integer number or
as <tile-width>,<tile-height>. If omitted,
the tile size will be derived from the
INPUT's internal spatial chunk sizes. If the
INPUT is not chunked, tile size will be 512.

-n, --num-levels-max NUM-LEVELS-MAX
Maximum number of levels to generate. If not
given, the number of levels will be derived
from spatial dimension and tile sizes.

--help Show this message and exit.

Example

$ xcube level --link -t 720 data/cubes/test-cube.zarr

Python API

The related Python API function are xcube.api.compute_levels(), xcube.api.read_levels(), and
xcube.api.write_levels().

4.5.3 xcube optimize

Synopsis

Optimize xcube dataset for faster access.

$ xcube optimize --help

Usage: xcube optimize [OPTIONS] CUBE

Optimize xcube dataset for faster access.

Reduces the number of metadata and coordinate data files in xcube dataset
given by CUBE. Consolidated cubes open much faster especially from remote
locations, e.g. in object storage, because obviously much less HTTP
requests are required to fetch initial cube meta information. That is, it
merges all metadata files into a single top-level JSON file ".zmetadata".
Optionally, it removes any chunking of coordinate variables so they
comprise a single binary data file instead of one file per data chunk. The
primary usage of this command is to optimize data cubes for cloud object
storage. The command currently works only for data cubes using ZARR
format.

Options:
-o, --output OUTPUT Output path. The placeholder "<built-in function

input>" will be replaced by the input's filename
without extension (such as ".zarr"). Defaults to
"{input}-optimized.zarr".

-I, --in-place Optimize cube in place. Ignores output path.
-C, --coords Also optimize coordinate variables by converting any

chunked arrays into single, non-chunked, contiguous

(continues on next page)

26 Chapter 4. CLI

xcube, Release 0.2.0

(continued from previous page)

arrays.
--help Show this message and exit.

Examples

Write an cube with consolidated metadata to cube-optimized.zarr:

$ xcube optimize ./cube.zarr

Write an optimized cube with consolidated metadata and consolidated coordinate variables to optimized/cube.
zarr (directory optimized must exist):

$ xcube optimize -C -o ./optimized/cube.zarr ./cube.zarr

Optimize a cube in-place with consolidated metadata and consolidated coordinate variables:

$ xcube optimize -IC ./cube.zarr

Python API

The related Python API function is xcube.api.optimize_dataset().

4.5.4 xcube prune

Delete empty chunks.

Attention: This tool will likely be integrated into xcube optimize in the near future.

$ xcube prune --help

Usage: xcube prune [OPTIONS] CUBE

Delete empty chunks. Deletes all data files associated with empty (NaN-
only) chunks in given CUBE, which must have ZARR format.

Options:
--dry-run Just read and process input, but don't produce any outputs.
--help Show this message and exit.

A related Python API function is xcube.api.get_empty_dataset_chunks().

4.5.5 xcube resample

Synopsis

Resample data along the time dimension.

4.5. Cube manipulation 27

xcube, Release 0.2.0

$ xcube resample --help

Usage: xcube resample [OPTIONS] CUBE

Resample data along the time dimension.

Options:
-c, --config CONFIG xcube dataset configuration file in YAML

format. More than one config input file is
allowed.When passing several config files,
they are merged considering the order passed
via command line.

-o, --output OUTPUT Output path. Defaults to 'out.zarr'.
-f, --format [zarr|netcdf4|mem]

Output format. If omitted, format will be
guessed from output path.

--variables, --vars VARIABLES Comma-separated list of names of variables
to be included.

-M, --method TEXT Temporal resampling method. Available
downsampling methods are 'count', 'first',
'last', 'min', 'max', 'sum', 'prod', 'mean',
'median', 'std', 'var', the upsampling
methods are 'asfreq', 'ffill', 'bfill',
'pad', 'nearest', 'interpolate'. If the
upsampling method is 'interpolate', the
option '--kind' will be used, if given.
Other upsampling methods that select
existing values honour the '--tolerance'
option. Defaults to 'mean'.

-F, --frequency TEXT Temporal aggregation frequency. Use format
"<count><offset>" where <offset> is one of
'H', 'D', 'W', 'M', 'Q', 'Y'. Defaults to
'1D'.

-O, --offset TEXT Offset used to adjust the resampled time
labels. Uses same syntax as frequency. Some
Pandas date offset strings are supported as
well.

-B, --base INTEGER For frequencies that evenly subdivide 1 day,
the origin of the aggregated intervals. For
example, for '24H' frequency, base could
range from 0 through 23. Defaults to 0.

-K, --kind TEXT Interpolation kind which will be used if
upsampling method is 'interpolation'. May be
one of 'zero', 'slinear', 'quadratic',
'cubic', 'linear', 'nearest', 'previous',
'next' where 'zero', 'slinear', 'quadratic',
'cubic' refer to a spline interpolation of
zeroth, first, second or third order;
'previous' and 'next' simply return the
previous or next value of the point. For
more info refer to
scipy.interpolate.interp1d(). Defaults to
'linear'.

-T, --tolerance TEXT Tolerance for selective upsampling methods.
Uses same syntax as frequency. If the time
delta exceeds the tolerance, fill values
(NaN) will be used. Defaults to the given

(continues on next page)

28 Chapter 4. CLI

xcube, Release 0.2.0

(continued from previous page)

frequency.
--dry-run Just read and process inputs, but don't

produce any outputs.
--help Show this message and exit.

Examples

Upsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 12H -T 6H -M interpolation -K linear
→˓examples/serve/demo/cube.nc

Downsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 3D -M mean -M std -M count examples/
→˓serve/demo/cube.nc

Python API

The related Python API function is xcube.api.resample_in_time().

4.5.6 xcube vars2dim

Synopsis

Convert cube variables into new dimension.

$ xcube vars2dim --help

Usage: xcube vars2dim [OPTIONS] CUBE

Convert cube variables into new dimension. Moves all variables of CUBE
into into a single new variable <var-name> with a new dimension DIM-NAME
and writes the results to OUTPUT.

Options:
--variable, --var VARIABLE Name of the new variable that includes all

variables. Defaults to "data".
-D, --dim_name DIM-NAME Name of the new dimension into variables.

Defaults to "var".
-o, --output OUTPUT Output path. If omitted, 'INPUT-vars2dim.INPUT-

FORMAT' will be used.
-f, --format FORMAT Format of the output. If not given, guessed from

OUTPUT.
--help Show this message and exit.

Python API

The related Python API function is xcube.api.vars_to_dim().

4.5. Cube manipulation 29

xcube, Release 0.2.0

4.6 Cube publication

4.6.1 xcube serve

Synopsis

Serve data cubes via web service.

xcube serve starts a light-weight web server that provides various services based on xcube datasets:

• Catalogue services to query for xcube datasets and their variables and dimensions, and feature collections;

• Tile map service, with some OGC WMTS 1.0 compatibility (REST and KVP APIs);

• Dataset services to extract subsets like time-series and profiles for e.g. JavaScript clients.

$ xcube serve --help

Usage: xcube serve [OPTIONS] [CUBE]...

Serve data cubes via web service.

Serves data cubes by a RESTful API and a OGC WMTS 1.0 RESTful and KVP
interface. The RESTful API documentation can be found at
https://app.swaggerhub.com/apis/bcdev/xcube-server.

Options:
-A, --address ADDRESS Service address. Defaults to 'localhost'.
-P, --port PORT Port number where the service will listen on.

Defaults to 8080.
--prefix PREFIX Service URL prefix. May contain template patterns

such as "${version}" or "${name}". For example
"${name}/api/${version}".

-u, --update PERIOD Service will update after given seconds of
inactivity. Zero or a negative value will disable
update checks. Defaults to 2.0.

-S, --styles STYLES Color mapping styles for variables. Used only, if one
or more CUBE arguments are provided and CONFIG is not
given. Comma-separated list with elements of the form
<var>=(<vmin>,<vmax>) or
<var>=(<vmin>,<vmax>,"<cmap>")

-c, --config CONFIG Use datasets configuration file CONFIG. Cannot be
used if CUBES are provided.

--tilecache SIZE In-memory tile cache size in bytes. Unit suffixes
'K', 'M', 'G' may be used. Defaults to '512M'. The
special value 'OFF' disables tile caching.

--tilemode MODE Tile computation mode. This is an internal option
used to switch between different tile computation
implementations. Defaults to 0.

-s, --show Run viewer app. Requires setting the environment
variable XCUBE_VIEWER_PATH to a valid xcube-viewer
deployment or build directory. Refer to
https://github.com/dcs4cop/xcube-viewer for more
information.

-v, --verbose Delegate logging to the console (stderr).
--traceperf Print performance diagnostics (stdout).
--help Show this message and exit.

30 Chapter 4. CLI

xcube, Release 0.2.0

Configuration File

The xcube server is used to configure the xcube datasets to be published.

xcube datasets are any datasets that

• that comply to Unidata’s CDM and to the CF Conventions;

• that can be opened with the xarray Python library;

• that have variables that have at least the dimensions and shape (time, lat, lon), in exactly this order;

• that have 1D-coordinate variables corresponding to the dimensions;

• that have their spatial grid defined in the WGS84 (EPSG:4326) coordinate reference system.

The xcube server supports xcube datasets stored as local NetCDF files, as well as Zarr directories in the local file
system or remote object storage. Remote Zarr datasets must be stored in publicly accessible, AWS S3 compatible
object storage (OBS).

As an example, here is the configuration of the demo server.

To increase imaging performance, xcube datasets can be converted to multi-resolution pyramids using the
cli/xcube_level tool. In the configuration, the format must be set to 'level'. Leveled xcube datasets are configured
this way:

Datasets:

- Identifier: my_multi_level_dataset
Title: "My Multi-Level Dataset"
FileSystem: local
Path: my_multi_level_dataset.level
Format: level

- ...

To increase time-series extraction performance, xcube datasets my be rechunked with larger chunk size in the time
dimension using the cli/xcube_chunk tool. In the xcube server configuration a hidden dataset is given, and the it is
referred to by the non-hidden, actual dataset using the TimeSeriesDataset setting:

Datasets:

- Identifier: my_dataset
Title: "My Dataset"
FileSystem: local
Path: my_dataset.zarr
TimeSeriesDataset: my_dataset_opt_for_ts

- Identifier: my_dataset_opt_for_ts
Title: "My Dataset optimized for Time-Series"
FileSystem: local
Path: my_ts_opt_dataset.zarr
Format: zarr
Hidden: True

- ...

4.6. Cube publication 31

https://www.unidata.ucar.edu/software/thredds/v4.3/netcdf-java/CDM/
http://cfconventions.org/
https://xarray.pydata.org/en/stable/
https://zarr.readthedocs.io/en/stable/
https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/config.yml

xcube, Release 0.2.0

Example

xcube serve --port 8080 --config ./examples/serve/demo/config.yml --verbose

xcube Server: WMTS, catalogue, data access, tile, feature, time-series services for
→˓xarray-enabled data cubes, version 0.2.0
[I 190924 17:08:54 service:228] configuration file
→˓'D:\\Projects\\xcube\\examples\\serve\\demo\\config.yml' successfully loaded
[I 190924 17:08:54 service:158] service running, listening on localhost:8080, try
→˓http://localhost:8080/datasets
[I 190924 17:08:54 service:159] press CTRL+C to stop service

Web API

The xcube server has a dedicated Web API Documentation on SwaggerHub. It also lets you explore the API of existing
xcube-servers.

The xcube server implements the OGC WMTS RESTful and KVP architectural styles of the OGC WMTS 1.0.0
specification. The following operations are supported:

• GetCapabilities: /xcube/wmts/1.0.0/WMTSCapabilities.xml

• GetTile: /xcube/wmts/1.0.0/tile/{DatasetName}/{VarName}/{TileMatrix}/
{TileCol}/{TileRow}.png

• GetFeatureInfo: in progress

32 Chapter 4. CLI

https://app.swaggerhub.com/apis-docs/bcdev/xcube-server
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/wmts

CHAPTER

FIVE

PYTHON API

5.1 Cube I/O

xcube.api.read_cube(input_path: str, format_name: str = None, **kwargs) → xar-
ray.core.dataset.Dataset

Read a xcube dataset from input_path. If format is not provided it will be guessed from input_path.

Parameters

• input_path – input path

• format_name – format, e.g. “zarr” or “netcdf4”

• kwargs – format-specific keyword arguments

Returns xcube dataset

xcube.api.open_cube(input_path: str, format_name: str = None, **kwargs) → xar-
ray.core.dataset.Dataset

The read_cube function as context manager that auto-closes the cube read.

Parameters

• input_path – input path

• format_name – format, e.g. “zarr” or “netcdf4”

• kwargs – format-specific keyword arguments

Returns xcube dataset

5.2 Cube generation

xcube.api.gen_cube(input_paths: Sequence[str] = None, input_processor_name: str = None, in-
put_processor_params: Dict = None, input_reader_name: str = None, in-
put_reader_params: Dict[str, Any] = None, output_region: Tuple[float, float, float,
float] = None, output_size: Tuple[int, int] = [512, 512], output_resampling: str
= ’Nearest’, output_path: str = ’out.zarr’, output_writer_name: str = None,
output_writer_params: Dict[str, Any] = None, output_metadata: Dict[str, Any]
= None, output_variables: List[Tuple[str, Optional[Dict[str, Any]]]] = None,
processed_variables: List[Tuple[str, Optional[Dict[str, Any]]]] = None, pro-
file_mode: bool = False, sort_mode: bool = False, append_mode: bool = None,
dry_run: bool = False, monitor: Callable[[...], None] = None)→ bool

Generate a xcube dataset from one or more input files.

Parameters

33

xcube, Release 0.2.0

• sort_mode –

• input_paths – The input paths.

• input_processor_name – Name of a registered input processor
(xcube.api.gen.inputprocessor.InputProcessor) to be used to transform the inputs.

• input_processor_params – Parameters to be passed to the input processor.

• input_reader_name – Name of a registered input reader
(xcube.api.util.dsio.DatasetIO).

• input_reader_params – Parameters passed to the input reader.

• output_region – Output region as tuple of floats: (lon_min, lat_min, lon_max,
lat_max).

• output_size – The spatial dimensions of the output as tuple of ints: (width, height).

• output_resampling – The resampling method for the output.

• output_path – The output directory.

• output_writer_name – Name of an output writer (xcube.api.util.dsio.DatasetIO) used
to write the cube.

• output_writer_params – Parameters passed to the output writer.

• output_metadata – Extra metadata passed to output cube.

• output_variables – Output variables.

• processed_variables – Processed variables computed on-the-fly.

• profile_mode – Whether profiling should be enabled.

• append_mode – Deprecated. The function will always either insert, replace, or append
new time slices.

• dry_run – Doesn’t write any data. For testing.

• monitor – A progress monitor.

Returns True for success.

xcube.api.new_cube(title=’Test Cube’, width=360, height=180, spatial_res=1.0, lon_start=-
180.0, lat_start=-90.0, time_periods=5, time_freq=’D’, time_start=’2010-
01-01T00:00:00’, inverse_lat=False, drop_bounds=False, variables=None)

Create a new empty cube. Useful for creating cubes templates with predefined coordinate variables and meta-
data. The function is also heavily used by xcube’s unit tests.

The values of the variables dictionary can be either constants, array-like objects, or functions that compute their
return value from passed coordinate indexes. The expected signature is::

def my_func(time: int, lat: int, lon: int) -> Union[bool, int, float]

Parameters

• title – A title.

• width – Horizontal number of grid cells

• height – Vertical number of grid cells

• spatial_res – Spatial resolution in degrees

• lon_start – Minimum longitude value

34 Chapter 5. Python API

xcube, Release 0.2.0

• lat_start – Minimum latitude value

• time_periods – Number of time steps

• time_freq – Duration of each time step

• time_start – First time value

• inverse_lat – Whether to create an inverse latitude axis

• drop_bounds – If True, coordinate bounds variables are not created.

• variables – Dictionary of data variables to be added.

Returns A cube instance

5.3 Cube data extraction

xcube.api.get_cube_values_for_points(cube: xarray.core.dataset.Dataset, points:
Union[xarray.core.dataset.Dataset, pan-
das.core.frame.DataFrame, Mapping[str, Any]],
var_names: Sequence[str] = None, include_coords:
bool = False, include_bounds: bool = False, in-
clude_indexes: bool = False, index_name_pattern:
str = ’{name}_index’, include_refs: bool = False,
ref_name_pattern: str = ’{name}_ref’, method:
str = ’nearest’, cube_asserted: bool = False) →
xarray.core.dataset.Dataset

Extract values from cube variables at given coordinates in points.

Parameters

• cube – The cube dataset.

• points – Dictionary that maps dimension name to coordinate arrays.

• var_names – An optional list of names of data variables in cube whose values shall be
extracted.

• include_coords – Whether to include the cube coordinates for each point in return
value.

• include_bounds – Whether to include the cube coordinate boundaries (if any) for each
point in return value.

• include_indexes – Whether to include computed indexes into the cube for each point
in return value.

• index_name_pattern – A naming pattern for the computed index columns. Must in-
clude “{name}” which will be replaced by the index’ dimension name.

• include_refs – Whether to include point (reference) values in return value.

• ref_name_pattern – A naming pattern for the computed point data columns. Must
include “{name}” which will be replaced by the point’s attribute name.

• method – “nearest” or “linear”.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

Returns A new data frame whose columns are values from cube variables at given points.

5.3. Cube data extraction 35

xcube, Release 0.2.0

xcube.api.get_cube_point_indexes(cube: xarray.core.dataset.Dataset, points:
Union[xarray.core.dataset.Dataset, pan-
das.core.frame.DataFrame, Mapping[str, Any]],
dim_name_mapping: Mapping[str, str] = None,
index_name_pattern: str = ’{name}_index’, in-
dex_dtype=<class ’numpy.float64’>, cube_asserted: bool =
False)→ xarray.core.dataset.Dataset

Get indexes of given point coordinates points into the given dataset.

Parameters

• cube – The cube dataset.

• points – A mapping from column names to column data arrays, which must all have the
same length.

• dim_name_mapping – A mapping from dimension names in cube to column names in
points.

• index_name_pattern – A naming pattern for the computed indexes columns. Must
include “{name}” which will be replaced by the dimension name.

• index_dtype – Numpy data type for the indexes. If it is a floating point type (default),
then indexes will contain fractions, which may be used for interpolation. For out-of-range
coordinates in points, indexes will be -1 if index_dtype is an integer type, and NaN, if in-
dex_dtype is a floating point types.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

Returns A dataset containing the index columns.

xcube.api.get_cube_values_for_indexes(cube: xarray.core.dataset.Dataset, indexes:
Union[xarray.core.dataset.Dataset, pan-
das.core.frame.DataFrame, Mapping[str, Any]],
include_coords: bool = False, include_bounds: bool
= False, data_var_names: Sequence[str] = None,
index_name_pattern: str = ’{name}_index’, method:
str = ’nearest’, cube_asserted: bool = False) →
xarray.core.dataset.Dataset

Get values from the cube at given indexes.

Parameters

• cube – A cube dataset.

• indexes – A mapping from column names to index and fraction arrays for all cube di-
mensions.

• include_coords – Whether to include the cube coordinates for each point in return
value.

• include_bounds – Whether to include the cube coordinate boundaries (if any) for each
point in return value.

• data_var_names – An optional list of names of data variables in cube whose values
shall be extracted.

• index_name_pattern – A naming pattern for the computed indexes columns. Must
include “{name}” which will be replaced by the dimension name.

• method – “nearest” or “linear”.

36 Chapter 5. Python API

xcube, Release 0.2.0

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

Returns A new data frame whose columns are values from cube variables at given indexes.

xcube.api.get_dataset_indexes(dataset: xarray.core.dataset.Dataset, coord_var_name: str,
coord_values: Union[xarray.core.dataarray.DataArray,
numpy.ndarray], index_dtype=<class ’numpy.float64’>) →
Union[xarray.core.dataarray.DataArray, numpy.ndarray]

Compute the indexes and their fractions into a coordinate variable coord_var_name of a dataset for the given
coordinate values coord_values.

The coordinate variable’s labels must be monotonic increasing or decreasing, otherwise the result will be non-
sense.

For any value in coord_values that is out of the bounds of the coordinate variable’s values, the index depends on
the value of index_dtype. If index_dtype is an integer type, invalid indexes are encoded as -1 while for floating
point types, NaN will be used.

Returns a tuple of indexes as int64 array and fractions as float64 array.

Parameters

• dataset – A cube dataset.

• coord_var_name – Name of a coordinate variable.

• coord_values – Array-like coordinate values.

• index_dtype – Numpy data type for the indexes. If it is floating point type (default),
then indexes contain fractions, which may be used for interpolation. If dtype is an integer
type out-of-range coordinates are indicated by index -1, and NaN if it is is a floating point
type.

Returns The indexes and their fractions as a tuple of numpy int64 and float64 arrays.

xcube.api.get_time_series(cube: xarray.core.dataset.Dataset, geometry:
Union[shapely.geometry.base.BaseGeometry, Dict[str, Any], str,
Sequence[Union[float, int]]] = None, var_names: Sequence[str] =
None, start_date: Union[numpy.datetime64, str] = None, end_date:
Union[numpy.datetime64, str] = None, include_count: bool = False,
include_stdev: bool = False, use_groupby: bool = False, cube_asserted:
bool = False)→ Optional[xarray.core.dataset.Dataset]

Get a time series dataset from a data cube.

geometry may be provided as a (shapely) geometry object, a valid GeoJSON object, a valid WKT string, a
sequence of box coordinates (x1, y1, x2, y2), or point coordinates (x, y). If geometry covers an area, i.e. is
not a point, the function aggregates the variables to compute a mean value and if desired, the number of valid
observations and the standard deviation.

start_date and end_date may be provided as a numpy.datetime64 or an ISO datetime string.

Returns a time-series dataset whose data variables have a time dimension but no longer have spatial di-
mensions, hence the resulting dataset’s variables will only have N-2 dimensions. A global attribute
max_number_of_observations will be set to the maximum number of observations that could have
been made in each time step. If the given geometry does not overlap the cube’s boundaries, or if not output
variables remain, the function returns None.

Parameters

• cube – The xcube dataset

• geometry – Optional geometry

5.3. Cube data extraction 37

xcube, Release 0.2.0

• var_names – Optional sequence of names of variables to be included.

• start_date – Optional start date.

• end_date – Optional end date.

• include_count – Whether to include the number of valid observations for each time
step. Ignored if geometry is a point.

• include_stdev – Whether to include standard deviation for each time step. Ignored if
geometry is a point.

• use_groupby – Use group-by operation. May increase or decrease runtime performance
and/or memory consumption.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

Returns A new dataset with time-series for each variable.

5.4 Cube manipulation

xcube.api.resample_in_time(cube: xarray.core.dataset.Dataset, frequency: str, method: Union[str,
Sequence[str]], offset=None, base: str = 0, tolerance=None, in-
terp_kind=None, var_names: Sequence[str] = None, metadata:
Dict[str, Any] = None)

Resample a xcube dataset in the time dimension.

Parameters

• cube – The xcube dataset.

• frequency – Resampling frequency.

• method – Resampling method or sequence of resampling methods.

• offset – Offset used to adjust the resampled time labels. Some pandas date offset strings
are supported.

• base – Resampling method.

• var_names – Variable names to include.

• tolerance – Time tolerance for selective upsampling methods. Defaults to frequency.

• interp_kind – Kind of interpolation if method is ‘interpolation’.

• metadata – Output metadata.

Returns A new xcube dataset resampled in time.

xcube.api.vars_to_dim(cube: xarray.core.dataset.Dataset, dim_name: str = ’var’, var_name=’data’,
cube_asserted: bool = False)

Convert data variables into a dimension.

Parameters

• cube – The xcube dataset.

• dim_name – The name of the new dimension and coordinate variable. Defaults to ‘var’.

• var_name – The name of the new, single data variable. Defaults to ‘data’.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

38 Chapter 5. Python API

xcube, Release 0.2.0

Returns A new xcube dataset with data variables turned into a new dimension.

xcube.api.chunk_dataset(dataset: xarray.core.dataset.Dataset, chunk_sizes: Dict[str, int] = None,
format_name: str = None)→ xarray.core.dataset.Dataset

Chunk dataset and update encodings for given format.

Parameters

• dataset – input dataset

• chunk_sizes – mapping from dimension name to new chunk size

• format_name – format, e.g. “zarr” or “netcdf4”

Returns the re-chunked dataset

xcube.api.unchunk_dataset(dataset_path: str, var_names: Sequence[str] = None, coords_only: bool
= False)

Unchunk dataset variables in-place.

Parameters

• dataset_path – Path to ZARR dataset directory.

• var_names – Optional list of variable names.

• coords_only – Un-chunk coordinate variables only.

xcube.api.vars_to_dim(cube: xarray.core.dataset.Dataset, dim_name: str = ’var’, var_name=’data’,
cube_asserted: bool = False)

Convert data variables into a dimension.

Parameters

• cube – The xcube dataset.

• dim_name – The name of the new dimension and coordinate variable. Defaults to ‘var’.

• var_name – The name of the new, single data variable. Defaults to ‘data’.

• cube_asserted – If False, cube will be verified, otherwise it is expected to be a valid
cube.

Returns A new xcube dataset with data variables turned into a new dimension.

5.5 Cube subsetting

xcube.api.select_vars(dataset: xarray.core.dataset.Dataset, var_names: Collection[str] = None)→
xarray.core.dataset.Dataset

Select data variable from given dataset and create new dataset.

Parameters

• dataset – The dataset from which to select variables.

• var_names – The names of data variables to select.

Returns A new dataset. It is empty, if var_names is empty. It is dataset, if var_names is None.

xcube.api.clip_dataset_by_geometry(dataset: xarray.core.dataset.Dataset, geome-
try: Union[shapely.geometry.base.BaseGeometry,
Dict[str, Any], str, Sequence[Union[float, int]]],
save_geometry_wkt: Union[str, bool] = False) →
Optional[xarray.core.dataset.Dataset]

Spatially clip a dataset according to the bounding box of a given geometry.

5.5. Cube subsetting 39

xcube, Release 0.2.0

Parameters

• dataset – The dataset

• geometry – A geometry-like object, see py:function:convert_geometry.

• save_geometry_wkt – If the value is a string, the effective intersection geometry is
stored as a Geometry WKT string in the global attribute named by save_geometry. If the
value is True, the name “geometry_wkt” is used.

Returns The dataset spatial subset, or None if the bounding box of the dataset has a no or a zero
area intersection with the bounding box of the geometry.

5.6 Cube masking

xcube.api.mask_dataset_by_geometry(dataset: xarray.core.dataset.Dataset, geometry:
Union[shapely.geometry.base.BaseGeometry, Dict[str,
Any], str, Sequence[Union[float, int]]], excluded_vars:
Sequence[str] = None, no_clip: bool = False,
save_geometry_mask: Union[str, bool] = False,
save_geometry_wkt: Union[str, bool] = False) →
Optional[xarray.core.dataset.Dataset]

Mask a dataset according to the given geometry. The cells of variables of the returned dataset will have NaN-
values where their spatial coordinates are not intersecting the given geometry.

Parameters

• dataset – The dataset

• geometry – A geometry-like object, see py:function:convert_geometry.

• excluded_vars – Optional sequence of names of data variables that should not be
masked (but still may be clipped).

• no_clip – If True, the function will not clip the dataset before masking, this is, the re-
turned dataset will have the same dimension size as the given dataset.

• save_geometry_mask – If the value is a string, the effective geometry mask array is
stored as a 2D data variable named by save_geometry_mask. If the value is True, the name
“geometry_mask” is used.

• save_geometry_wkt – If the value is a string, the effective intersection geometry is
stored as a Geometry WKT string in the global attribute named by save_geometry. If the
value is True, the name “geometry_wkt” is used.

Returns The dataset spatial subset, or None if the bounding box of the dataset has a no or a zero
area intersection with the bounding box of the geometry.

class xcube.api.MaskSet(flag_var: xarray.core.dataarray.DataArray)
A set of mask variables derived from a variable flag_var with CF attributes “flag_masks” and “flag_meanings”.

Each mask is represented by an xarray.DataArray and has the name of the flag, is of type numpy.unit8, and has
the dimensions of the given flag_var.

Parameters flag_var – an xarray.DataArray that defines flag values. The CF attributes
“flag_masks” and “flag_meanings” are expected to exists and be valid.

40 Chapter 5. Python API

xcube, Release 0.2.0

5.7 Cube optimization

xcube.api.optimize_dataset(input_path: str, output_path: str = None, in_place: bool = False,
unchunk_coords: bool = False, exception_type: Type[Exception] =
<class ’ValueError’>)

Optimize a dataset for faster access.

Reduces the number of metadata and coordinate data files in xcube dataset given by given by dataset_path.
Consolidated cubes open much faster from remote locations, e.g. in object storage, because obviously much
less HTTP requests are required to fetch initial cube meta information. That is, it merges all metadata files
into a single top-level JSON file “.zmetadata”. If unchunk_coords is set, it removes any chunking of coordinate
variables so they comprise a single binary data file instead of one file per data chunk. The primary usage of this
function is to optimize data cubes for cloud object storage. The function currently works only for data cubes
using ZARR format.

Parameters

• input_path – Path to input dataset with ZARR format.

• output_path – Path to output dataset with ZARR format. May contain “{input}” tem-
plate string, which is replaced by the input path’s file name without file name extentsion.

• in_place – Whether to modify the dataset in place. If False, a copy is made and out-
put_path must be given.

• unchunk_coords – Whether to also consolidate coordinate chunk files.

• exception_type – Type of exception to be used on value errors.

5.8 Cube metadata

xcube.api.update_dataset_attrs(dataset: xarray.core.dataset.Dataset, global_attrs: Dict[str,
Any] = None, update_existing: bool = False, in_place: bool =
False)→ xarray.core.dataset.Dataset

Update spatio-temporal CF/THREDDS attributes given dataset according to spatio-temporal coordinate vari-
ables time, lat, and lon.

Parameters

• dataset – The dataset.

• global_attrs – Optional global attributes.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

Returns A new dataset, if in_place if False (default), else the passed and modified dataset.

xcube.api.update_dataset_spatial_attrs(dataset: xarray.core.dataset.Dataset, up-
date_existing: bool = False, in_place: bool =
False)→ xarray.core.dataset.Dataset

Update spatial CF/THREDDS attributes of given dataset.

Parameters

• dataset – The dataset.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

5.7. Cube optimization 41

xcube, Release 0.2.0

Returns A new dataset, if in_place if False (default), else the passed and modified dataset.

xcube.api.update_dataset_temporal_attrs(dataset: xarray.core.dataset.Dataset, up-
date_existing: bool = False, in_place: bool =
False)→ xarray.core.dataset.Dataset

Update temporal CF/THREDDS attributes of given dataset.

Parameters

• dataset – The dataset.

• update_existing – If True, any existing attributes will be updated.

• in_place – If True, dataset will be modified in place and returned.

Returns A new dataset, if in_place is False (default), else the passed and modified dataset.

5.9 Cube verification

xcube.api.assert_cube(dataset: xarray.core.dataset.Dataset, name=None) → xar-
ray.core.dataset.Dataset

Assert that the given dataset is a valid xcube dataset.

Parameters

• dataset – The dataset to be validated.

• name – Optional parameter name.

Raise ValueError, if dataset is not a valid xcube dataset

xcube.api.verify_cube(dataset: xarray.core.dataset.Dataset)→ List[str]
Verify the given dataset for being a valid xcube dataset.

The tool verifies that dataset * defines the dimensions “time”, “lat”, “lon”; * has corresponding “time”, “lat”,
“lon” coordinate variables and that they

are valid, e.g. 1-D, non-empty, using correct units;

• has valid bounds variables for “time”, “lat”, “lon” coordinate variables, if any;

• has any data variables and that they are valid, e.g. min. 3-D, all have same dimensions, have at least
dimensions “time”, “lat”, “lon”.

Returns a list of issues, which is empty if dataset is a valid xcube dataset.

Parameters dataset – A dataset to be verified.

Returns List of issues or empty list.

42 Chapter 5. Python API

xcube, Release 0.2.0

5.10 Multi-resolution pyramids

xcube.api.compute_levels(dataset: xarray.core.dataset.Dataset, spatial_dims: Tuple[str, str] =
None, spatial_shape: Tuple[int, int] = None, spatial_tile_shape: Tu-
ple[int, int] = None, var_names: Sequence[str] = None, num_levels_max:
int = None, post_process_level: Callable[[xarray.core.dataset.Dataset,
int, int], Optional[xarray.core.dataset.Dataset]] = None,
progress_monitor: Callable[[xarray.core.dataset.Dataset, int,
int], Optional[xarray.core.dataset.Dataset]] = None) →
List[xarray.core.dataset.Dataset]

Transform the given dataset into the levels of a multi-level pyramid with spatial resolution decreasing by a factor
of two in both spatial dimensions.

It is assumed that the spatial dimensions of each variable are the inner-most, that is, the last two elements of a
variable’s shape provide the spatial dimension sizes.

Parameters

• dataset – The input dataset to be turned into a multi-level pyramid.

• spatial_dims – If given, only variables are considered whose last to dimension elements
match the given spatial_dims.

• spatial_shape – If given, only variables are considered whose last to shape elements
match the given spatial_shape.

• spatial_tile_shape – If given, chunking will match the provided spatial_tile_shape.

• var_names – Variables to consider. If None, all variables with at least two dimensions are
considered.

• num_levels_max – If given, the maximum number of pyramid levels.

• post_process_level – If given, the function will be called for each level and must
return a dataset.

• progress_monitor – If given, the function will be called for each level.

Returns A list of dataset instances representing the multi-level pyramid.

xcube.api.read_levels(dir_path: str, progress_monitor: Callable[[xarray.core.dataset.Dataset,
int, int], Optional[xarray.core.dataset.Dataset]] = None) →
List[xarray.core.dataset.Dataset]

Read the of a multi-level pyramid with spatial resolution decreasing by a factor of two in both spatial dimensions.

Parameters

• dir_path – The directory path.

• progress_monitor – An optional progress monitor.

Returns A list of dataset instances representing the multi-level pyramid.

xcube.api.write_levels(output_path: str, dataset: xarray.core.dataset.Dataset =
None, input_path: str = None, link_input: bool = False,
progress_monitor: Callable[[xarray.core.dataset.Dataset, int, int],
Optional[xarray.core.dataset.Dataset]] = None, **kwargs) →
List[xarray.core.dataset.Dataset]

Transform the given dataset given by a dataset instance or input_path string into the levels of a multi-level
pyramid with spatial resolution decreasing by a factor of two in both spatial dimensions and write them to
output_path.

One of dataset and input_path must be given.

5.10. Multi-resolution pyramids 43

xcube, Release 0.2.0

Parameters

• output_path – Output path

• dataset – Dataset to be converted and written as levels.

• input_path – Input path to a dataset to be transformed and written as levels.

• link_input – Just link the dataset at level zero instead of writing it.

• progress_monitor – An optional progress monitor.

• kwargs – Keyword-arguments accepted by the compute_levels() function.

Returns A list of dataset instances representing the multi-level pyramid.

5.11 Utilities

xcube.api.convert_geometry(geometry: Union[shapely.geometry.base.BaseGeometry, Dict[str,
Any], str, Sequence[Union[float, int]], None]) → Op-
tional[shapely.geometry.base.BaseGeometry]

Convert a geometry-like object into a shapely geometry object (shapely.geometry.BaseGeometry).

A geometry-like object is may be any shapely geometry object, * a dictionary that can be serialized to valid
GeoJSON, * a WKT string, * a box given by a string of the form “<x1>,<y1>,<x2>,<y2>”

or by a sequence of four numbers x1, y1, x2, y2,

• a point by a string of the form “<x>,<y>” or by a sequence of two numbers x, y.

Handling of geometries crossing the antimeridian:

• If box coordinates are given, it is allowed to pass x1, x2 where x1 > x2, which is interpreted as a box
crossing the antimeridian. In this case the function splits the box along the antimeridian and returns a
multi-polygon.

• In all other cases, 2D geometries are assumed to _not cross the antimeridian at all_.

Parameters geometry – A geometry-like object

Returns Shapely geometry object or None.

44 Chapter 5. Python API

CHAPTER

SIX

WEB API AND SERVER

xcube’s RESTful web API is used to publish data cubes to clients. Using the API, clients can

• List configured xcube datasets;

• Get xcube dataset details including metadata, coordinate data, and metadata about all included variables;

• Get cube data;

• Extract time-series statistics from any variable given any geometry;

• Get spatial image tiles from any variable;

• Get places (GeoJSON features including vector data) that can be associated with xcube datasets.

Later versions of API will also allow for xcube dataset management including generation, modification, and deletion
of xcube datasets.

The complete description of all available functions is provided in the in the xcube Web API reference.

The web API is provided through the xcube server which is started using the xcube serve CLI command.

45

https://app.swaggerhub.com/apis-docs/bcdev/xcube-server/0.2.0

xcube, Release 0.2.0

46 Chapter 6. Web API and Server

CHAPTER

SEVEN

VIEWER APP

The xcube viewer app is a simple, single-page web application to be used with the xcube server.

7.1 Demo

To test the viewer app, you can use the xcube viewer demo. When you open the page a message “cannot reach server”
will appear. This is normal as the demo is configured to run with an xcube server started locally on default port 8080,
see Web API and Server. Hence, you can either run an xcube server instance locally then reload the viewer page, or
configure the viewer with an an existing xcube server. To do so open the viewer’s settings panels, select “Server”. A
“Select Server” panel is opened, click the “+” button to add a new server. Here are two demo servers that you may add
for testing:

• DCS4COP Demo Server (https://xcube2.dcs4cop.eu/dcs4cop-dev/api/0.1.0.dev6/) pro-
viding ocean color variables in the North Sea area for the Data Cube Service for Copernicus (DCS4COP) EU
project;

• ESDL Server (https://xcube.earthsystemdatalab.net) providing global essential climate vari-
ables (ECVs) variables for the ESA Earth System Data Lab.

7.2 Functionality

Coming soon. . .

7.3 Build and Deploy

You can also build and deploy your own viewer instance. In the latter case, visit the xcube-viewer repository on
GitHub and follow the instructions provides in the related README file.

47

https://xcube-viewer.s3.eu-central-1.amazonaws.com/index.html
https://dcs4cop.eu/
https://www.earthsystemdatalab.net/
https://github.com/dcs4cop/xcube-viewer
https://github.com/dcs4cop/xcube-viewer/blob/master/README.md

xcube, Release 0.2.0

48 Chapter 7. Viewer App

CHAPTER

EIGHT

XCUBE DATASET SPECIFICATION

This document provides a technical specification of the protocol and format for xcube datasets, data cubes in the xcube
sense.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

8.1 Document Status

This is the latest version, which is still in development.

Version: 1.0, draft

Updated: 31.05.2018

8.2 Motivation

For many users of Earth observation data, multivariate coregistration, extraction, comparison, and analysis of different
data sources is difficult, while data is provided in various formats and at different spatio-temporal resolutions.

8.3 High-level requirements

xcube datasets

• SHALL be time series of gridded, geo-spatial, geo-physical variables.

• SHALL use a common, equidistant, global or regional geo-spatial grid.

• SHALL shall be easy to read, write, process, generate.

• SHALL conform to the requirements of analysis ready data (ARD).

• SHALL be compatible with existing tools and APIs.

• SHALL conform to standards or common practices and follow a common data model.

• SHALL be formatted as self-contained datasets.

• SHALL be “cloud ready”, in the sense that subsets of the data can be accessed by individual URIs.

ARD links:

• http://ceos.org/ard/

49

https://www.ietf.org/rfc/rfc2119.txt

xcube, Release 0.2.0

• https://landsat.usgs.gov/ard

• https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815

8.4 xcube Dataset Schemas

8.4.1 Basic Schema

• Attributes metadata convention

– SHALL be CF >= 1.7

– SHOULD adhere to Attribute Convention for Data Discovery

• Dimensions:

– SHALL be at least time, bnds, and MAY be any others.

– SHALL all be greater than zero, but bnds must always be two.

• Temporal coordinate variables:

– SHALL provide time coordinates for given time index.

– MAY be non-equidistant or equidistant.

– time[time] SHALL provide observation or average time of cell centers.

– time_bnds[time, bnds] SHALL provide observation or integration time of cell boundaries.

– Attributes:

* Temporal coordinate variables MUST have units, standard_name, and any others.

* standard_name MUST be "time", units MUST have format "<deltatime> since
<datetime>", where datetime must have ISO-format. calendar may be given, if not,
"gregorian" is assumed.

• Spatial coordinate variables

– SHALL provide spatial coordinates for given spatial index.

– SHALL be equidistant in either angular or metric units

• Cube variables:

– SHALL provide cube cells with the dimensions as index.

– SHALL have shape

* [time, ..., lat, lon] (see WGS84 schema) or

* [time, ..., y, x] (see Generic schema)

– MAY have extra dimensions, e.g. layer (of the atmosphere), band (of a spectrum).

– SHALL specify the units metadata attribute.

– SHOULD specify metadata attributes that are used to identify missing values, namely _FillValue and
/ or valid_min, valid_max, see notes in CF conventions on these attributes.

– MAY specify metadata attributes that can be used to visualise the data:

* color_bar_name: Name of a predefined colour mapping. The colour bar is applied between a
minimum and a maximum value.

50 Chapter 8. xcube Dataset Specification

http://cfconventions.org/
http://wiki.esipfed.org/index.php/Attribute_Convention_for_Data_Discovery

xcube, Release 0.2.0

* color_value_min, color_value_max: Minimum and maximum value for applying the
colour bar. If not provided, minimum and maximum default to valid_min, valid_max. If neither
are provided, minimum and maximum default to 0 and 1.

8.4.2 WGS84 Schema (extends Basic)

• Dimensions:

– SHALL be at least time, lat, lon, bnds, and MAY be any others.

• Spatial coordinate variables:

– SHALL use WGS84 (EPSG:4326) CRS.

– SHALL have lat[lat] that provides observation or average latitude of cell centers with attributes:
standard_name="latitude" units="degrees_north".

– SHALL have lon[lon] that provides observation or average longitude of cell centers with attributes:
standard_name="longitude" and units="degrees_east".

– SHOULD HAVE lat_bnds[lat, bnds], lon_bnds[lon, bnds]: provide geodetic observa-
tion or integration coordinates of cell boundaries.

• Cube variables:

– SHALL have shape [time, ..., lat, lon].

8.4.3 Generic Schema (extends Basic)

• Dimensions: time, y, x, bnds, and any others.

– SHALL be at least time, y, x, bnds, and MAY be any others.

• Spatial coordinate variables:

– Any spatial grid and CRS.

– y[y], x[x]: provide spatial observation or average coordinates of cell centers.

* Attributes: standard_name, units, other units describe the CRS / projections, see CF.

– y_bnds[y, bnds], x_bnds[x, bnds]: provide spatial observation or integration coordinates of
cell boundaries.

– MAY have lat[y,x]: latitude of cell centers.

* Attributes: standard_name="latitude", units="degrees_north".

– lon[y,x]: longitude of cell centers.

* Attributes: standard_name="longitude", units="degrees_east".

• Cube variables:

– MUST have shape [time, ..., y, x].

8.5 xcube EO Processing Levels

This section provides an attempt to characterize xcube datasets generated from Earth Observation (EO) data according
to their processing levels as they are commonly used in EO data processing.

8.5. xcube EO Processing Levels 51

xcube, Release 0.2.0

8.5.1 Level-1C and Level-2C

• Generated from Level-1A, -1B, -2A, -2B EO data.

• Spatially resampled to common grid

– Typically resampled at original resolution.

– May be down-sampled: aggregation/integration.

– May be upsampled: interpolation.

• No temporal aggregation/integration.

• Temporally non-equidistant.

8.5.2 Level-3

• Generated from Level-2C or -3 by temporal aggregation.

• No spatial processing.

• Temporally equidistant.

• Temporally integrated/aggregated.

52 Chapter 8. xcube Dataset Specification

CHAPTER

NINE

XCUBE DEVELOPER GUIDE

Version 0.1, draft

IMPORTANT NOTE: Any changes to this doc must be reviewed by dev-team through pull requests.

9.1 Preface

Gedacht ist nicht gesagt.Gesagt ist nicht gehört.Gehört ist nicht verstanden.Verstanden ist nicht einver-
standen.Einverstanden ist nicht umgesetzt.Umgesetzt ist nicht beibehalten.

by Konrad Lorenz (translation is left to the reader)

9.2 Table of Contents

• Versioning

• Coding Style

• Main Packages

– Package xcube.cli

– Package xcube.api

– Package xcube.webapi

• Development Process

9.3 Versioning

We adhere to PEP-440.

The current software version is in xcube/version.py.

While developing a version, we append version suffix .dev<N>. Before the release, we remove the suffix.

9.4 Coding Style

We try adhering to PEP-8.

53

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0008/

xcube, Release 0.2.0

9.5 Main Packages

• xcube.cli - Here live CLI commands that are required by someone. CLI command implementations should
be lightweight. Move implementation code either into api or util.CLI commands must be maintained w.r.t.
backward compatibility. Therefore think twice before adding new or change existing CLI commands.

• xcube.api - Here live API functions that are required by someone or that exists because a CLI command is
implemented here. API code must be maintained w.r.t. backward compatibility. Therefore think twice before
adding new or change existing API.

• xcube.webapi - Here live Web API functions that are required by someone. Web API command implemen-
tations should be lightweight. Move implementation code either into api or util.Web API interface must be
maintained w.r.t. backward compatibility. Therefore think twice before adding new or change existing API.

• xcube.util - Mainly implementation helpers. Comprises classes and functions that are used by cli, api,
webapi in order to maximize modularisation and testability but to minimize code duplication.The code in here
must not be dependent on any of cli, api, webapi. The code in here may change often and in any way as
desired by code implementing the cli, api, webapi packages.

The following sections will guide you through extending or changing the main packages that form xcube’s public
interface.

9.5.1 Package xcube.cli

Checklist

Make sure your change

1. is covered by unit-tests (package test/api);

2. is reflected by the CLI’s doc-strings and tools documentation (currently in README.md);

3. follows existing xcube CLI conventions;

4. follows PEP8 conventions;

5. is reflected in API and WebAPI, if desired;

6. is reflected in CHANGES.md.

Hints

Make sure your new CLI command is in line with the others commands regarding command name, option names, as
well as metavar arguments names. The CLI command name shall ideally be a verb.

Avoid introducing new option arguments if similar options are already in use for existing commands.

In the following common arguments and options are listed.

Input argument:

@click.argument('input')

If input argument is restricted to an xcube dataset:

@click.argument('cube')

Output (directory) option:

54 Chapter 9. xcube Developer Guide

xcube, Release 0.2.0

@click.option('--output', '-o', metavar='OUTPUT',
help='Output directory. If omitted, "INPUT.levels" will be used.')

Output format:

@click.option('--format', '-f', metavar='FORMAT', type=click.Choice(['zarr', 'netcdf
→˓']),

help="Format of the output. If not given, guessed from OUTPUT.")

Output parameters:

@click.option('--param', '-p', metavar='PARAM', multiple=True,
help="Parameter specific for the output format. Multiple allowed.")

Variable names:

@click.option('--variable',--var', metavar='VARIABLE', multiple=True,
help="Name of a variable. Multiple allowed.")

For parsing CLI inputs, use helper functions that are already in use. In the CLI command implementation code, raise
click.ClickException(message) with a clear message for users.

Common xcube CLI options like -f for FORMAT should be lower case letters and specific xcube CLI options like
-S for SIZE in xcube gen are recommended to be uppercase letters.

Extensively validate CLI inputs to avoid that API functions raise ValueError, TypeError, etc. Such errors and
their message texts are usually hard to understand by users. They are actually dedicated to to developers, not CLI
users.

There is a global option --traceback flag that user can set to dump stack traces. You don’t need to print stack
traces from your code.

9.5.2 Package xcube.api

Checklist

Make sure your change

1. is covered by unit-tests (package test/api);

2. is covered by API documentation;

3. follows existing xcube API conventions;

4. follows PEP8 conventions;

5. is reflected in xarray extension class xcube.api.api.API;

6. is reflected in CLI and WebAPI if desired;

7. is reflected in CHANGES.md.

Hints

Create new module in xcube.api and add your functions. For any functions added make sure naming is in line with
other API. Add clear doc-string to the new API. Use Sphinx RST format.

9.5. Main Packages 55

xcube, Release 0.2.0

Decide if your API methods requires xcube datasets as inputs, if so, name the primary dataset argument cube and
add a keyword parameter cube_asserted: bool = False. Otherwise name the primary dataset argument
dataset.

Reflect the fact, that a certain API method or function operates only on datasets that conform with the xcube dataset
specifications by using cube in its name rather than dataset. For example compute_dataset can operate on
any xarray datasets, while get_cube_values_for_points expects a xcube dataset as input or read_cube
ensures it will return valid xcube datasets only.

In the implementation, if not cube_asserted, we must assert and verify the cube is a cube. Pass True to
cube_asserted argument of other API called later on:

from .verify import assert_cube

def frombosify_cube(cube: xr.Dataset, ..., cube_asserted: bool = False):
if not cube_asserted:

assert_cube(cube)
...
result = bibosify_cube(cube, ..., cube_asserted=True)
...

If import xcube.api is used in client code, any xarray.Dataset object will have an extra property xcube
whose interface is defined by the class xcube.api.XCubeAPI. This class is an xarray extension that is used to
reflect xcube.api functions and make it directly applicable to the xarray.Dataset object.

Therefore any xcube API shall be reflected in this extension class.

9.5.3 Package xcube.webapi

Checklist

Make sure your change

1. is covered by unit-tests (package test/webapi);

2. is covered by Web API specification and documentation (currently in webapi/res/openapi.yml);

3. follows existing xcube Web API conventions;

4. follows PEP8 conventions;

5. is reflected in CLI and API, if desired;

6. is reflected in CHANGES.md.

9.5.4 Hints

• The Web API is defined in webapi.app which defines mapping from resource URLs to handlers

• All handlers are implemented in webapi.handlers. Handler code just delegates to dedicated controllers.

• All controllers are implemented in webapi.controllers.*. They might further delegate into api.*

9.6 Development Process

1. Make sure there is an issue ticket for your code change work item

56 Chapter 9. xcube Developer Guide

http://xarray.pydata.org/en/stable/internals.html#extending-xarray

xcube, Release 0.2.0

2. Select issue, priorities are as follows

1. “urgent” and (“important” and “bug”)

2. “urgent” and (“important” or “bug”)

3. “urgent”

4. “important” and “bug”

5. “important” or “bug”

6. others

3. Make sure issue is assigned to you, if unclear agree with team first.

4. Add issue label “in progress”.

5. Create development branch named “developer-issue#-title”.

6. Develop, having in mind the checklists and implementation hints above.

1. In your first commit, refer the issue so it will appear as link in the issue history

2. Develop, test, and push to the remote branch as desired.

3. In your last commit, utilize checklists above. (You can include the line “closes #” in your commit message
to auto-close the issue once the PR is merged.)

7. Create PR if build servers succeed on your branch. If not, fix issue first.For the PR assign the team for review,
agree who is to merge. Also reviewers must have checklist in mind!

8. Merge PR after all reviewers are accepted your change. Otherwise go back.

9. Remove issue label “in progress”.

10. Delete the development branch “developer-issue#-title”.

11. If the PR is only partly solving an issue:

1. Make sure the issue contains a to-do list (checkboxes) to complete the issue.

2. Do not include the line “closes #” in your last commit message.

3. Add “relates to issue#” in PR.

4. Make sure to check the corresponding to-do items (checkboxes) after the PR is merged.

5. Remove issue label “in progress”.

6. Leave issue open.

9.6. Development Process 57

xcube, Release 0.2.0

58 Chapter 9. xcube Developer Guide

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

59

xcube, Release 0.2.0

60 Chapter 10. Indices and tables

INDEX

A
assert_cube() (in module xcube.api), 42

C
chunk_dataset() (in module xcube.api), 39
clip_dataset_by_geometry() (in module

xcube.api), 39
compute_levels() (in module xcube.api), 43
convert_geometry() (in module xcube.api), 44

G
gen_cube() (in module xcube.api), 33
get_cube_point_indexes() (in module

xcube.api), 35
get_cube_values_for_indexes() (in module

xcube.api), 36
get_cube_values_for_points() (in module

xcube.api), 35
get_dataset_indexes() (in module xcube.api), 37
get_time_series() (in module xcube.api), 37

M
mask_dataset_by_geometry() (in module

xcube.api), 40
MaskSet (class in xcube.api), 40

N
new_cube() (in module xcube.api), 34

O
open_cube() (in module xcube.api), 33
optimize_dataset() (in module xcube.api), 41

R
read_cube() (in module xcube.api), 33
read_levels() (in module xcube.api), 43
resample_in_time() (in module xcube.api), 38

S
select_vars() (in module xcube.api), 39

U
unchunk_dataset() (in module xcube.api), 39
update_dataset_attrs() (in module xcube.api),

41
update_dataset_spatial_attrs() (in module

xcube.api), 41
update_dataset_temporal_attrs() (in mod-

ule xcube.api), 42

V
vars_to_dim() (in module xcube.api), 38, 39
verify_cube() (in module xcube.api), 42

W
write_levels() (in module xcube.api), 43

61

	Overview
	Examples
	Installation
	CLI
	Python API
	Web API and Server
	Viewer App
	xcube Dataset Specification
	xcube Developer Guide
	Indices and tables
	Index

