

xcube - An xarray-based EO data cube toolkit

Warning

This documentation is a work in progress and currently less than a

draft.

xcube has been developed to generate, manipulate, analyse, and publish data
cubes from EO data.

Getting Started

	Overview

	Examples

	Installation

User Guide

	CLI

	Python API

	Web API and Server

	Viewer App

	The xcube generator

Other Resources

	xcube Dataset Specification

	xcube Developer Guide

	Plugins

Indices and tables

	Index

	Module Index

	Search Page

Overview

xcube is an open-source Python package and toolkit that has been developed to provide Earth observation (EO) data in an
analysis-ready form to users. xcube achieves this by carefully converting EO data sources into self-contained data cubes
that can be published in the cloud.

Data Cube

The interpretation of the term data cube in the EO domain usually depends
on the current context. It may refer to a data service such as Sentinel Hub [https://www.sentinel-hub.com/], to some abstract
API, or to a concrete set of spatial images that form a time-series.

This section briefly explains the specific concept of a data cube used in the xcube project - the xcube dataset.

xcube Dataset

Data Model

An xcube dataset contains one or more (geo-physical) data variables
whose values are stored in cells of a common multi-dimensional, spatio-temporal grid.
The dimensions are usually time, latitude, and longitude, however other dimensions may be present.

All xcube datasets are structured in the same way following a common data model.
They are also self-describing by providing metadata for the cube and
all cube’s variables following the CF conventions [http://cfconventions.org/cf-conventions/cf-conventions.html].
For details regarding the common data model, please refer to the xcube Dataset Specification.

A xcube dataset’s in-memory representation in Python programs is an xarray.Dataset [http://xarray.pydata.org/en/stable/data-structures.html#dataset] instance. Each
dataset variable is represented by multi-dimensional xarray.DataArray [http://xarray.pydata.org/en/stable/data-structures.html#dataarray] that is arranged in non-overlapping,
contiguous sub-regions called data chunks.

Data Chunks

Chunked variables allow for out-of-core computations of xcube dataset that don’t fit in a single computer’s RAM as
data chunks can be processed independently from each other.

The way how dataset variables are sub-divided into smaller chunks - their chunking -
has a substantial impact on processing performance and there is no single ideal
chunking for all use cases. For time series analyses it is preferable to have chunks with a
smaller spatial dimensions and larger time dimension, for spatial analyses and visualisation
on using a map, the opposite is the case.

xcube provide tools for re-chunking of xcube datasets (xcube chunk, xcube level)
and the xcube server (xcube serve) allows
serving the same data cubes using different chunkings. For further reading have a look into the
Chunking and Performance [http://xarray.pydata.org/en/stable/dask.html#chunking-and-performance] section of the xarray documentation.

Processing Model

When xcube datasets are opened, only the cube’s structure and its metadata are loaded into memory. The actual
data arrays of variables are loaded on-demand only, and only for chunks intersecting the desired sub-region.

Operations that generate new data variables from existing ones will be chunked
in the same way. Therefore, such operation chains generate a processing graph providing a deferred, concurrent
execution model.

Data Format

For the external, physical representation of xcube datasets we usually use the Zarr format [https://zarr.readthedocs.io/en/stable/spec/v2.html]. Zarr takes full
advantage of data chunks and supports parallel processing of chunks that may originate from the local file system
or from remote cloud storage such as S3 and GCS.

Python Packages

The xcube package builds heavily on Python’s big data ecosystem for handling huge N-dimensional data arrays
and exploiting cloud-based storage and processing resources. In particular, xcube’s in-memory data model is
provided by xarray [http://xarray.pydata.org/], the memory management and processing model is provided through dask [https://dask.readthedocs.io/],
and the external format is provided by zarr [https://zarr.readthedocs.io/]. xarray, dask, and zarr have increased their popularity for
big data solutions over the last couple of years, for creating scalable and efficient EO data solutions.

Toolkit

On top of xarray [http://xarray.pydata.org/], dask [https://dask.readthedocs.io/], zarr [https://zarr.readthedocs.io/], and other popular Python data science packages,
xcube provides various higher-level tools to generate, manipulate, and publish xcube datasets:

	CLI - access, generate, modify, and analyse xcube datasets using the xcube tool;

	Python API - access, generate, modify, and analyse xcube datasets via Python programs and notebooks;

	Web API and Server - access, analyse, visualize xcube datasets via an xcube server;

	Viewer App – publish and visualise xcube datasets using maps and time-series charts.

Workflows

The basic use case is to generate an xcube dataset and deploy it so that your users can access it:

	generate an xcube dataset from some EO data sources
using the xcube gen tool with a specific input processor.

	optimize the generated xcube dataset with respect to specific use cases
using the xcube chunk tool.

	optimize the generated xcube dataset by consolidating metadata and elimination of empty chunks
using xcube optimize and xcube prune tools.

	deploy the optimized xcube dataset(s) to some location (e.g. on AWS S3) where users can access them.

Then you can:

	access, analyse, modify, transform, visualise the data using the Python API and xarray API [http://xarray.pydata.org/en/stable/api.html] through
Python programs or JupyterLab [https://jupyterlab.readthedocs.io/], or

	extract data points by coordinates from a cube
using the xcube extract tool, or

	resample the cube in time to generate temporal aggregations
using the xcube resample tool.

Another way to provide the data to users is via the xcube server, that provides a
RESTful API and a WMTS [https://en.wikipedia.org/wiki/Web_Map_Tile_Service]. The latter is used
to visualise spatial subsets of xcube datasets efficiently at any zoom level.
To provide optimal visualisation and data extraction performance through the xcube server,
xcube datasets may be prepared beforehand. Steps 8 to 10 are optional.

	verify a dataset to be published conforms with the xcube Dataset Specification
using the xcube verify tool.

	adjust your dataset chunking to be optimal for generating spatial image tiles and generate
a multi-resolution image pyramid
using the xcube chunk and xcube level tools.

	create a dataset variant optimal for time series-extraction again
using the xcube chunk tool.

	configure xcube datasets and publish them through the xcube server
using the xcube serve tool.

You may then use a WMTS-compatible client to visualise the datasets or develop your own xcube server client that
will make use of the xcube’s REST API.

The easiest way to visualise your data is using the xcube Viewer App, a single-page web application that
can be configured to work with xcube server URLs.

Examples

When you follow the examples section you can build your first tiny xcube dataset and view it in the xcube-viewer
by using the xcube server. The examples section is still growing and improving :)

Have fun exploring xcube!

	Generating an xcube dataset

	Publishing xcube datasets

Warning

This chapter is a work in progress and currently less than a draft.

Generating an xcube dataset

In the following example a tiny demo xcube dataset is generated.

Analysed Sea Surface Temperature over the Global Ocean

Input data for this example is located in the xcube repository [https://github.com/dcs4cop/xcube/tree/master/examples/gen/data].
The input files contain analysed sea surface temperature and sea surface temperature anomaly over the global ocean
and are provided by Copernicus Marine Environment Monitoring Service [http://marine.copernicus.eu/].
The data is described in a dedicated Product User Manual [http://resources.marine.copernicus.eu/documents/PUM/CMEMS-SST-PUM-010-001.pdf].

Before starting the example, you need to activate the xcube environment:

$ conda activate xcube

If you want to take a look at the input data you can use cli/xcube dump to print out the metadata of a selected input file:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-v02.0-fv02.0.nc

<xarray.Dataset>
Dimensions: (lat: 720, lon: 1440, time: 1)
Coordinates:
 * lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875
 * lon (lon) float32 0.125 0.375 0.625 ... 359.375 359.625 359.875
 * time (time) object 2017-06-05 12:00:00
Data variables:
 sst_anomaly (time, lat, lon) float32 ...
 analysed_sst (time, lat, lon) float32 ...
Attributes:
 Conventions: CF-1.4
 title: Global SST & Sea Ice Anomaly, L4 OSTIA, 0.25 ...
 summary: A merged, multi-sensor L4 Foundation SST anom...
 references: Donlon, C.J., Martin, M., Stark, J.D., Robert...
 institution: UKMO
 history: Created from sst:temperature regridded with a...
 comment: WARNING Some applications are unable to prope...
 license: These data are available free of charge under...
 id: UKMO-L4LRfnd_GLOB-OSTIAanom
 naming_authority: org.ghrsst
 product_version: 2.0
 uuid: 5c1665b7-06e8-499d-a281-857dcbfd07e2
 gds_version_id: 2.0
 netcdf_version_id: 3.6
 date_created: 20170606T061737Z
 start_time: 20170605T000000Z
 time_coverage_start: 20170605T000000Z
 stop_time: 20170606T000000Z
 time_coverage_end: 20170606T000000Z
 file_quality_level: 3
 source: UKMO-L4HRfnd-GLOB-OSTIA
 platform: Aqua, Envisat, NOAA-18, NOAA-19, MetOpA, MSG1...
 sensor: AATSR, AMSR, AVHRR, AVHRR_GAC, SEVIRI, TMI
 metadata_conventions: Unidata Observation Dataset v1.0
 metadata_link: http://data.nodc.noaa.gov/NESDIS_DataCenters/...
 keywords: Oceans > Ocean Temperature > Sea Surface Temp...
 keywords_vocabulary: NASA Global Change Master Directory (GCMD) Sc...
 standard_name_vocabulary: NetCDF Climate and Forecast (CF) Metadata Con...
 westernmost_longitude: 0.0
 easternmost_longitude: 360.0
 southernmost_latitude: -90.0
 northernmost_latitude: 90.0
 spatial_resolution: 0.25 degree
 geospatial_lat_units: degrees_north
 geospatial_lat_resolution: 0.25 degree
 geospatial_lon_units: degrees_east
 geospatial_lon_resolution: 0.25 degree
 acknowledgment: Please acknowledge the use of these data with...
 creator_name: Met Office as part of CMEMS
 creator_email: servicedesk.cmems@mercator-ocean.eu
 creator_url: http://marine.copernicus.eu/
 project: Group for High Resolution Sea Surface Tempera...
 publisher_name: GHRSST Project Office
 publisher_url: http://www.ghrsst.org
 publisher_email: ghrsst-po@nceo.ac.uk
 processing_level: L4
 cdm_data_type: grid

Below an example xcube dataset will be created, which will contain the variable analysed_sst.
The metadata for a specific variable can be viewed by:

$ xcube dump examples/gen/data/20170605120000-UKMO-L4_GHRSST-SSTfnd-OSTIAanom-GLOB-v02.0-fv02.0.nc --var analysed_sst

<xarray.DataArray 'analysed_sst' (time: 1, lat: 720, lon: 1440)>
[1036800 values with dtype=float32]
Coordinates:
 * lat (lat) float32 -89.875 -89.625 -89.375 ... 89.375 89.625 89.875
 * lon (lon) float32 0.125 0.375 0.625 0.875 ... 359.375 359.625 359.875
 * time (time) object 2017-06-05 12:00:00
Attributes:
 long_name: analysed sea surface temperature
 standard_name: sea_surface_foundation_temperature
 type: foundation
 units: kelvin
 valid_min: -300
 valid_max: 4500
 source: UKMO-L4HRfnd-GLOB-OSTIA
 comment:

For creating a toy xcube dataset you can execute the command-line below. Please adjust the paths to your needs:

$ xcube gen -o "your/output/path/demo_SST_xcube.zarr" -c examples/gen/config_files/xcube_sst_demo_config.yml --sort examples/gen/data/*.nc

The configuration file [https://github.com/dcs4cop/xcube/tree/master/examples/gen/config_files/xcube_sst_demo_config.yml] specifies the input processor, which in this case is the default one.
The output size is 10240, 5632. The bounding box of the data cube is given by output_region in the configuration file.
The output format (output_writer_name) is defined as well.
The chunking of the dimensions can be set by the chunksizes attribute of the output_writer_params parameter,
and in the example configuration file the chunking is set for latitude and longitude. If the chunking is not set, a automatic chunking is applied.
The spatial resampling method (output_resampling) is set to ‘nearest’ and the configuration file contains only one
variable which will be included into the xcube dataset - ‘analysed-sst’.

The Analysed Sea Surface Temperature data set contains the variable already as needed. This means no pixel
masking needs to be applied. However, this might differ depending on the input data. You can take a look at a
configuration file which takes Sentinel-3 Ocean and Land Colour Instrument (OLCI) [https://github.com/dcs4cop/xcube/tree/master/examples/gen/config_files/xcube_olci_demo_config.yml]
as input files, which is a bit more complex.
The advantage of using pixel expressions is, that the generated cube contains only valid pixels and the user of the
data cube does not have to worry about something like land-masking or invalid values.
Furthermore, the generated data cube is spatially regular. This means the data are aligned on a common spatial grid and
cover the same region. The time stamps are kept from the input data set.

Caution: If you have input data that has file names not only varying with the time stamp but with e.g. A and B as well,
you need to pass the input files in the desired order via a text file. Each line of the text file should contain the
path to one input file. If you pass the input files in a desired order, then do not use the parameter --sort within
the commandline interface.

Optimizing and pruning a xcube dataset

If you want to optimize your generated xcube dataset e.g. for publishing it in a xcube viewer via xcube serve
you can use cli/xcube optimize:

$ xcube optimize demo_SST_xcube.zarr -C

By executing the command above, an optimized xcube dataset called demo_SST_xcube-optimized.zarr will be created.
You can take a look into the directory of the original xcube dataset and the optimized one, and you will notice that
a file called .zmetadata. .zmetadata contains the information stored in .zattrs and .zarray of each variable of the
xcube dataset and makes requests of metadata faster. The option -C optimizes coordinate variables by converting any
chunked arrays into single, non-chunked, contiguous arrays.

For deleting empty chunks cli/xcube prune can be used. It deletes all data files associated with empty (NaN-only)
chunks of an xcube dataset, and is restricted to the ZARR format.

$ xcube prune demo_SST_xcube-optimized.zarr

The pruned xcube dataset is saved in place and does not need an output path. The size of the xcube dataset was 6,8 MB before pruning it
and 6,5 MB afterwards. According to the output printed to the terminal, 30 block files were deleted.

The metadata of the xcube dataset can be viewed with cli/xcube dump as well:

$ xcube dump demo_SST_xcube-optimized.zarr

<xarray.Dataset>
Dimensions: (bnds: 2, lat: 5632, lon: 10240, time: 3)
Coordinates:
 * lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.0 48.0
 lat_bnds (lat, bnds) float64 dask.array<shape=(5632, 2), chunksize=(5632, 2)>
 * lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.67
 lon_bnds (lon, bnds) float64 dask.array<shape=(10240, 2), chunksize=(10240, 2)>
 * time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00
 time_bnds (time, bnds) datetime64[ns] dask.array<shape=(3, 2), chunksize=(3, 2)>
Dimensions without coordinates: bnds
Data variables:
 analysed_sst (time, lat, lon) float64 dask.array<shape=(3, 5632, 10240), chunksize=(1, 704, 640)>
Attributes:
 acknowledgment: Data Cube produced based on data provided by ...
 comment:
 contributor_name:
 contributor_role:
 creator_email: info@brockmann-consult.de
 creator_name: Brockmann Consult GmbH
 creator_url: https://www.brockmann-consult.de
 date_modified: 2019-09-25T08:50:32.169031
 geospatial_lat_max: 62.666666666666664
 geospatial_lat_min: 48.0
 geospatial_lat_resolution: 0.002604166666666666
 geospatial_lat_units: degrees_north
 geospatial_lon_max: 10.666666666666664
 geospatial_lon_min: -16.0
 geospatial_lon_resolution: 0.0026041666666666665
 geospatial_lon_units: degrees_east
 history: xcube/reproj-snap-nc
 id: demo-bc-sst-sns-l2c-v1
 institution: Brockmann Consult GmbH
 keywords:
 license: terms and conditions of the DCS4COP data dist...
 naming_authority: bc
 processing_level: L2C
 project: xcube
 publisher_email: info@brockmann-consult.de
 publisher_name: Brockmann Consult GmbH
 publisher_url: https://www.brockmann-consult.de
 references: https://dcs4cop.eu/
 source: CMEMS Global SST & Sea Ice Anomaly Data Cube
 standard_name_vocabulary:
 summary:
 time_coverage_end: 2017-06-08T00:00:00.000000000
 time_coverage_start: 2017-06-05T00:00:00.000000000
 title: CMEMS Global SST Anomaly Data Cube

The metadata for the variable analysed_sst can be viewed:

$ xcube dump demo_SST_xcube-optimized.zarr --var analysed_sst

<xarray.DataArray 'analysed_sst' (time: 3, lat: 5632, lon: 10240)>
dask.array<shape=(3, 5632, 10240), dtype=float64, chunksize=(1, 704, 640)>
Coordinates:
 * lat (lat) float64 62.67 62.66 62.66 62.66 ... 48.01 48.01 48.0 48.0
 * lon (lon) float64 -16.0 -16.0 -15.99 -15.99 ... 10.66 10.66 10.66 10.67
 * time (time) datetime64[ns] 2017-06-05T12:00:00 ... 2017-06-07T12:00:00
Attributes:
 comment:
 long_name: analysed sea surface temperature
 source: UKMO-L4HRfnd-GLOB-OSTIA
 spatial_resampling: Nearest
 standard_name: sea_surface_foundation_temperature
 type: foundation
 units: kelvin
 valid_max: 4500
 valid_min: -300

Warning

This chapter is a work in progress and currently less than a draft.

Publishing xcube datasets

This example demonstrates how to run an xcube server to publish existing xcube datasets.

Running the server

To run the server on default port 8080 using the demo configuration:

$ xcube serve --verbose -c examples/serve/demo/config.yml

To run the server using a particular xcube dataset path and styling information for a variable:

$ xcube serve --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-1-250-250.zarr

Test it

After starting the server, check the various functions provided by xcube Web API.

	
	Datasets:
	
	Get datasets [http://localhost:8080/datasets]

	Get dataset details [http://localhost:8080/datasets/local]

	Get dataset coordinates [http://localhost:8080/datasets/local/coords/time]

	
	Color bars:
	
	Get color bars [http://localhost:8080/colorbars]

	Get color bars (HTML) [http://localhost:8080/colorbars.html]

	
	WMTS:
	
	Get WMTS KVP Capabilities (XML) [http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetCapabilities]

	Get WMTS KVP local tile (PNG) [http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetTile&Version=1.0.0&Layer=local.conc_chl&TileMatrix=0&TileRow=0&TileCol=0&Format=image/png]

	Get WMTS KVP remote tile (PNG) [http://localhost:8080/wmts/kvp?Service=WMTS&Request=GetTile&Version=1.0.0&Layer=remote.conc_chl&TileMatrix=0&TileRow=0&TileCol=0&Format=image/png]

	Get WMTS REST Capabilities (XML) [http://localhost:8080/wmts/1.0.0/WMTSCapabilities.xml]

	Get WMTS REST local tile (PNG) [http://localhost:8080/wmts/1.0.0/tile/local/conc_chl/0/0/1.png]

	Get WMTS REST remote tile (PNG) [http://localhost:8080/wmts/1.0.0/tile/remote/conc_chl/0/0/1.png]

	
	Tiles
	
	Get tile (PNG) [http://localhost:8080/datasets/local/vars/conc_chl/tiles/0/1/0.png]

	Get tile grid for OpenLayers 4.x [http://localhost:8080/datasets/local/vars/conc_chl/tilegrid?tiles=ol4]

	Get tile grid for Cesium 1.x [http://localhost:8080/datasets/local/vars/conc_chl/tilegrid?tiles=cesium]

	Get legend for layer (PNG) [http://localhost:8080/datasets/local/vars/conc_chl/legend.png]

	
	Time series service (preliminary & unstable, will likely change soon)
	
	Get time stamps per dataset [http://localhost:8080/ts]

	Get time series for single point [http://localhost:8080/ts/local/conc_chl/point?lat=51.4&lon=2.1&startDate=2017-01-15&endDate=2017-01-29]

	
	Places service (preliminary & unstable, will likely change soon>`_
	
	Get all features [http://localhost:8080/places/all]

	Get all features of collection “inside-cube” [http://localhost:8080/features/inside-cube]

	Get all features for dataset “local” [http://localhost:8080/places/all/local]

	Get all features of collection “inside-cube” for dataset “local” [http://localhost:8080/places/inside-cube/local]

xcube Viewer

xcube datasets published through xcube serve can be visualised using the xcube-viewer [https://github.com/dcs4cop/xcube-viewer/] web application.
To do so, run xcube serve with the --show flag.

In order make this option usable, xcube-viewer must be installed and build:

	Download and install yarn [https://yarnpkg.com/lang/en/].

	Download and build xcube-viewer:

$ git clone https://github.com/dcs4cop/xcube-viewer.git
$ cd xcube-viewer
$ yarn build

	Configure xcube serve so it finds the xcube-viewer
On Linux (please adjust path):

 $ export XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

On Windows (please adjust path):

> SET XCUBE_VIEWER_PATH=/abs/path/to/xcube-viewer/build

	Then run xcube serve --show:

$ xcube serve --show --styles conc_chl=(0,20,"viridis") examples/serve/demo/cube-1-250-250.zarr

Viewing the generated xcube dataset described in the example Generating an xcube dataset:

$ xcube serve --show --styles "analysed_sst=(280,290,'plasma')" demo_SST_xcube-optimized.zarr

[image: ../_images/screenshot_xcube_viewer_sst_docu.png]
In case you get an error message “cannot reach server” on the very bottom of the web app’s main window,
refresh the page.

You can play around with the value range displayed in the viewer, here it is set to min=280K and max=290K.
The colormap used for mapping can be modified as well and the
colormaps provided by matplotlib [https://matplotlib.org/examples/color/colormaps_reference.html] can be used.

Other clients

There are example HTML pages for some tile server clients. They need to be run in
a web server. If you don’t have one, you can use Node’s httpserver:

$ npm install -g httpserver

After starting both the xcube server and web server, e.g. on port 9090:

$ httpserver -d -p 9090

you can run the client demos by following their links given below.

OpenLayers

	OpenLayers 4 Demo [http://localhost:9090/examples/serve/demo/index-ol4.html]

	OpenLayers 4 Demo with WMTS [http://localhost:9090/examples/serve/demo/index-ol4-wmts.html]

Cesium

To run the Cesium Demo [http://localhost:9090/examples/serve/demo/index-cesium.html] first
download Cesium [https://cesiumjs.org/downloads/] and unpack the zip
into the xcube serve source directory so that there exists an
./Cesium-x.y.z sub-directory. You may have to adapt the Cesium version number
in the demo’s HTML file [https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/index-cesium.html].

Installation

xcube can be installed from a released conda package, or directly from a
copy of the source code repository.

The first two sections below give instructions for installation using conda,
available as part of the miniconda
distribution [https://docs.conda.io/en/latest/miniconda.html]. If installation
using conda proves to be unacceptably slow, mamba can be used instead (see
Installation using mamba).

Installation from the conda package

Into a currently active, existing conda environment (>= Python 3.7)

$ conda install -c conda-forge xcube

Into a new conda environment named xcube:

$ conda create -c conda-forge -n xcube xcube

The argument to the -n option can be changed to create a differently
named environment.

Installation from the source code repository

First, clone the repository and create a conda environment from it:

$ git clone https://github.com/dcs4cop/xcube.git
$ cd xcube
$ conda env create

From this point on, all instructions assume that your current directory is the
root of the xcube repository.

The conda env create command above creates an environment according to
the specifications in the environment.yml file in the repository, which
by default takes the name xcube. Then, to activate the environment and
install xcube from the repository:

$ conda activate xcube
$ pip install --no-deps --editable .

The second command installs xcube in ‘editable mode’, meaning that it will
be run directly from the repository, and changes to the code in the repository
will take immediate effect without reinstallation. (As an alternative to
pip, the command python setup.py develop can be used, but this is
no longer recommended [https://docs.python.org/3/install/#introduction].
Among other things, pip has the advantage of allowing easy deinstallation of
installed packages.)

To update the install to the latest repository version and update the
environment to reflect to any changes in environment.yml:

$ conda activate xcube
$ git pull --force
$ conda env update -n xcube --file environment.yml --prune

To install pytest and run the unit test suite:

$ conda install pytest
$ pytest

To analyse test coverage (after installing pytest as above):

$ pytest --cov=xcube

To produce an HTML
coverage report [https://pytest-cov.readthedocs.io/en/latest/reporting.html]:

$ pytest --cov-report html --cov=xcube

Installation using mamba

Mamba [https://github.com/mamba-org/mamba] is a dramatically faster drop-in
replacement for the conda tool. Mamba itself can be installed using conda.
If installation using conda proves to be unacceptably slow, it is recommended
to install mamba, as follows:

$ conda create -n xcube python=3.8
$ conda activate xcube
$ conda install -c conda-forge mamba

This creates a conda environment called xcube, activates the environment,
and installs mamba in it. To install xcube from its conda-forge package, you
can now use:

$ mamba install -c conda-forge xcube

Alternatively, to install xcube directly from the repository:

$ git clone https://github.com/dcs4cop/xcube.git
$ cd xcube
$ mamba env create
$ pip install --no-deps --editable .

Docker

To start a demo using docker use the following commands

$ docker build -t [your name] .
$ docker run -d -p [host port]:8000 [your name]

Example:

$ docker build -t xcube:0.1.0dev6 .
$ docker run -d -p 8001:8000 xcube:0.1.0dev6
$ docker ps

CLI

The xcube command-line interface (CLI) is a single executable xcube with several
sub-commands comprising functions ranging from xcube dataset generation, over analysis and
manipulation, to dataset publication.

Common Arguments and Options

Most of the commands operate on inputs that are xcube datasets. Such inputs are consistently named
CUBE and provided as one or more command arguments. CUBE inputs may be a path into the
local file system or a path into some object storage bucket, e.g. in AWS S3.
Command inputs of other types are consistently called INPUT.

Many commands also output something, i.e. are writing files. The paths or names of such outputs are
consistently provided by the -o OUTPUT or --output OUTPUT option. As the output is an option,
there is usually a default value for it. If multiply file formats are supported, commands usually
provide a -f FORMAT or --format FORMAT option. If omitted, the format may be guessed from the
output’s name.

Cube generation

	xcube gen

	xcube grid

Cube computation

	xcube compute

Cube inspection

	xcube dump

	xcube verify

Cube data extraction

	xcube extract

Cube manipulation

	xcube chunk

	xcube edit

	xcube level

	xcube optimize

	xcube prune

	xcube resample

	xcube vars2dim

Cube conversion

	xcube tile

	xcube level

Cube publication

	xcube serve

xcube gen

Synopsis

Generate xcube dataset.

$ xcube gen --help

Usage: xcube gen [OPTIONS] [INPUT]...

 Generate xcube dataset. Data cubes may be created in one go or
 successively for all given inputs. Each input is expected to provide a
 single time slice which may be appended, inserted or which may replace an
 existing time slice in the output dataset. The input paths may be one or
 more input files or a pattern that may contain wildcards '?', '*', and
 '**'. The input paths can also be passed as lines of a text file. To do
 so, provide exactly one input file with ".txt" extension which contains
 the actual input paths to be used.

Options:
 -P, --proc INPUT-PROCESSOR Input processor name. The available input
 processor names and additional information
 about input processors can be accessed by
 calling xcube gen --info . Defaults to
 "default", an input processor that can deal
 with simple datasets whose variables have
 dimensions ("lat", "lon") and conform with
 the CF conventions.
 -c, --config CONFIG xcube dataset configuration file in YAML
 format. More than one config input file is
 allowed.When passing several config files,
 they are merged considering the order passed
 via command line.
 -o, --output OUTPUT Output path. Defaults to 'out.zarr'
 -f, --format FORMAT Output format. Information about output
 formats can be accessed by calling xcube gen
 --info. If omitted, the format will be
 guessed from the given output path.
 -S, --size SIZE Output size in pixels using format
 "<width>,<height>".
 -R, --region REGION Output region using format "<lon-min>,<lat-
 min>,<lon-max>,<lat-max>"
 --variables, --vars VARIABLES Variables to be included in output. Comma-
 separated list of names which may contain
 wildcard characters "*" and "?".
 --resampling [Average|Bilinear|Cubic|CubicSpline|Lanczos|Max|Median|Min|Mode|Nearest|Q1|Q3]
 Fallback spatial resampling algorithm to be
 used for all variables. Defaults to
 'Nearest'. The choices for the resampling
 algorithm are: ['Average', 'Bilinear',
 'Cubic', 'CubicSpline', 'Lanczos', 'Max',
 'Median', 'Min', 'Mode', 'Nearest', 'Q1',
 'Q3']
 -a, --append Deprecated. The command will now always
 create, insert, replace, or append input
 slices.
 --prof Collect profiling information and dump
 results after processing.
 --no_sort The input file list will not be sorted
 before creating the xcube dataset. If
 --no_sort parameter is passed, the order of
 the input list will be kept. This parameter
 should be used for better performance,
 provided that the input file list is in
 correct order (continuous time).
 -I, --info Displays additional information about format
 options or about input processors.
 --dry_run Just read and process inputs, but don't
 produce any outputs.
 --help Show this message and exit.

Below is the ouput of a xcube gen --info call showing five input processors installed via plugins.

$ xcube gen --info

input processors to be used with option --proc:
 default Single-scene NetCDF/CF inputs in xcube standard format
 rbins-seviri-highroc-scene-l2 RBINS SEVIRI HIGHROC single-scene Level-2 NetCDF inputs
 rbins-seviri-highroc-daily-l2 RBINS SEVIRI HIGHROC daily Level-2 NetCDF inputs
 snap-olci-highroc-l2 SNAP Sentinel-3 OLCI HIGHROC Level-2 NetCDF inputs
 snap-olci-cyanoalert-l2 SNAP Sentinel-3 OLCI CyanoAlert Level-2 NetCDF inputs
 vito-s2plus-l2 VITO Sentinel-2 Plus Level 2 NetCDF inputs

For more input processors use existing "xcube-gen-..." plugins from the github organisation DCS4COP or write own plugin.

output formats to be used with option --format:
 csv (*.csv) CSV file format
 mem (*.mem) In-memory dataset I/O
 netcdf4 (*.nc) NetCDF-4 file format
 zarr (*.zarr) Zarr file format (http://zarr.readthedocs.io)

Configuration File

Configuration files passed to xcube gen via the -c, --config option use YAML format [https://en.wikipedia.org/wiki/YAML].
Multiple configuration files may be given. In this case all configurations are merged into a single one.
Parameter values will be overwritten by subsequent configurations if they are scalars. If
they are objects / mappings, their values will be deeply merged.

The following parameters can be used in the configuration files:

	input_processorstr
	The name of an input processor. See -P, --proc option above.

	Default

	The default value is 'default', xcube’s default input processor. It can ingest and process
inputs that

	use an EPSG:4326 (or compatible) grid;

	have 1-D lon and lat coordinate variables using WGS84 coordinates and decimal degrees;

	have a decodable 1-D time coordinate or define the one of the following global attribute pairs
time_coverage_start and time_coverage_end,
time_start and time_end or time_stop;

	provide data variables with the dimensions time, lat, lon, in this order.

	conform to the `CF Conventions`_.

	output_size[int, int]
	The spatial dimension sizes of the output dataset given as number of grid
cells in longitude and latitude direction (width and height).

	output_region[float, float, float, float]
	The spatial extent of output datasets given as a bounding box [lat-min, lat-min, lon-max, lat-max]
using decimal degrees.

	output_variables[variable-definitions]
	The definition of variables that will be included in the output dataset.
Each variable definition may be just a name or a mapping from a name to variable attributes.
If it is just a name it must be the name of an existing variable either in the INPUT
or in processed_variables. If the variable definition is a mapping, some of the
attributes affect the way how variables are processed.
All but the name attributes become variable metadata in the output.

	namestr
	The new name of the variable in the output.

	valid_pixel_expressionstr
	An expression used to mask this variable, see Expressions. The expression identifies all
valid pixels in each INPUT.

	resamplingstr
	The resampling method used. See --resampling option above.

	Default

	By default, all variables in INPUT will occur in output.

	processed_variables[variable-definitions]
	The definition of variables that will be produced or processed
after reading each INPUT. The main purpose is to generate intermediate variables that can be referred to in
the expression in other variable definitions in processed_variables and
valid_pixel_expression in variable definitions in output_variables. The following attributes are
recognised:

	expressionstr
	An expression used to produce this variable, see Expressions.

	output_writer_namestr
	The name of a supported output format. May be one of 'zarr', 'netcdf4', 'mem'.

	Default

	'zarr'

	output_writer_paramsstr
	A mapping that defines parameters that are passed to output writer denoted by output_writer_name.
Through the output_writer_params a packing of the variables may be defined.
If not specified the default does not apply any packing which results in:

_FillValue: nan
dtype: dtype('float32')

and for coordinate variables

dtype: dtype('int64')

The user may specify a different packing variables,
which might be useful for reducing the storage size of the datacubes.
Currently it is only implemented for zarr format.
This may be done by passing the parameters for packing as the following:

output_writer_params:

 packing:
 analysed_sst:
 scale_factor: 0.07324442274239326
 add_offset: -300.0
 dtype: 'uint16'
 _FillValue: 0.65535

Furthermore the compressor may be defined as well by,
if not specified the default compressor
(cname=’lz4’, clevel=5, shuffle=SHUFFLE, blocksize=0) is used.

output_writer_params:

 compressor:
 cname: 'zstd'
 clevel: 1
 shuffle: 2

	output_metadata[attribute-definitions]
	General metadata that will be present in the output dataset as global attributes.
You can put any common
CF attributes [http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#attribute-appendix]
here.

Any attributes that are mappings will be “flattened” by concatenating the attribute names using
the underscrore character. For example,:

publisher:
 name: "Brockmann Consult GmbH"
 url: "https://www.brockmann-consult.de"

will create the two entries:

publisher_name: "Brockmann Consult GmbH"
publisher_url: "https://www.brockmann-consult.de"

Expressions

Expressions are plain text values of the expression and valid_pixel_expression attributes of the
variable definitions in the processed_variables and output_variables parameters.
The expression syntax is that of standard Python.
xcube gen uses expressions to produce new variables listed in processed_variables and to mask
variables by the valid_pixel_expression.

An expression may refer any variables in the INPUT datasets and any variables defined by the processed_variables
parameter. Expressions may make use of most of the standard Python operators
and may apply all numpy ufuncs [https://docs.scipy.org/doc/numpy/reference/ufuncs.html] to referred variables. Also most of the xarray.DataArray API [http://xarray.pydata.org/en/stable/api.html#dataarray]
may be used on variables within an expression.

In order to utilise flagged variables, the syntax variable_name.flag_name can be used in expressions.
According to the CF Conventions [http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#flags],
flagged variables are variables whose metadata include the attributes flag_meanings and flag_values
and/or flag_masks. The flag_meanings attribute enumerates the allowed values for flag_name.
The flag attributes must be present in the variables of each INPUT.

Example

An example that uses a configuration file only:

$ xcube gen --config ./config.yml /data/eo-data/SST/2018/**/*.nc

An example that uses the default input processor and passes all other configuration via command-line options:

$ xcube gen -S 2000,1000 -R 0,50,5,52.5 --vars conc_chl,conc_tsm,kd489,c2rcc_flags,quality_flags -o hiroc-cube.zarr /data/eo-data/SST/2018/**/*.nc

Some input processors have been developed for specific EO data sources
used within the DCS4COP project. They may serve as examples how to develop
input processor plug-ins:

	xcube-gen-rbins [https://github.com/dcs4cop/xcube-gen-rbins]

	xcube-gen-bc [https://github.com/dcs4cop/xcube-gen-bc]

	xcube-gen-vito [https://github.com/dcs4cop/xcube-gen-vito]

Python API

The related Python API function is xcube.core.gen.gen.gen_cube().

xcube grid

Attention

This tool will likely change in the near future.

Synopsis

Find spatial xcube dataset resolutions and adjust bounding boxes.

$ xcube grid --help

Usage: xcube grid [OPTIONS] COMMAND [ARGS]...

 Find spatial xcube dataset resolutions and adjust bounding boxes.

 We find suitable resolutions with respect to a possibly regional fixed
 Earth grid and adjust regional spatial bounding boxes to that grid. We
 also try to select the resolutions such that they are taken from a certain
 level of a multi-resolution pyramid whose level resolutions increase by a
 factor of two.

 The graticule at a given resolution level L within the grid is given by

 RES(L) = COVERAGE * HEIGHT(L)
 HEIGHT(L) = HEIGHT_0 * 2 ^ L
 LON(L, I) = LON_MIN + I * HEIGHT_0 * RES(L)
 LAT(L, J) = LAT_MIN + J * HEIGHT_0 * RES(L)

 With

 RES: Grid resolution in degrees.
 HEIGHT: Number of vertical grid cells for given level
 HEIGHT_0: Number of vertical grid cells at lowest resolution level.

 Let WIDTH and HEIGHT be the number of horizontal and vertical grid cells
 of a global grid at a certain LEVEL with WIDTH * RES = 360 and HEIGHT *
 RES = 180, then we also force HEIGHT = TILE * 2 ^ LEVEL.

Options:
 --help Show this message and exit.

Commands:
 abox Adjust a bounding box to a fixed Earth grid.
 levels List levels for a resolution or a tile size.
 res List resolutions close to a target resolution.

Example: Find suitable target resolution for a ~300m (Sentinel 3 OLCI FR resolution)
fixed Earth grid within a deviation of 5%.

$ xcube grid res 300m -D 5%

TILE LEVEL HEIGHT INV_RES RES (deg) RES (m), DELTA_RES (%)
540 7 69120 384 0.0026041666666666665 289.9 -3.4
4140 4 66240 368 0.002717391304347826 302.5 0.8
8100 3 64800 360 0.002777777777777778 309.2 3.1
...

289.9m is close enough and provides 7 resolution levels, which is good. Its inverse resolution is 384,
which is the fixed Earth grid identifier.

We want to see if the resolution pyramid also supports a resolution close to 10m
(Sentinel 2 MSI resolution).

$ xcube grid levels 384 -m 6

LEVEL HEIGHT INV_RES RES (deg) RES (m)
0 540 3 0.3333333333333333 37106.5
1 1080 6 0.16666666666666666 18553.2
2 2160 12 0.08333333333333333 9276.6
...
11 1105920 6144 0.00016276041666666666 18.1
12 2211840 12288 8.138020833333333e-05 9.1
13 4423680 24576 4.0690104166666664e-05 4.5

This indicates we have a resolution of 9.1m at level 12.

Lets assume we have xcube dataset region with longitude from 0 to 5 degrees
and latitudes from 50 to 52.5 degrees. What is the adjusted bounding box
on a fixed Earth grid with the inverse resolution 384?

$ xcube grid abox 0,50,5,52.5 384

Orig. box coord. = 0.0,50.0,5.0,52.5
Adj. box coord. = 0.0,49.21875,5.625,53.4375
Orig. box WKT = POLYGON ((0.0 50.0, 5.0 50.0, 5.0 52.5, 0.0 52.5, 0.0 50.0))
Adj. box WKT = POLYGON ((0.0 49.21875, 5.625 49.21875, 5.625 53.4375, 0.0 53.4375, 0.0 49.21875))
Grid size = 2160 x 1620 cells
with
 TILE = 540
 LEVEL = 7
 INV_RES = 384
 RES (deg) = 0.0026041666666666665
 RES (m) = 289.89450727414993

Note, to check bounding box WKTs, you can use the
handy Wicket [https://arthur-e.github.io/Wicket/sandbox-gmaps3.html] tool.

xcube compute

Synopsis

Compute a cube variable from other cube variables using a user-provided Python function.

$ xcube compute --help

Usage: xcube compute [OPTIONS] SCRIPT [CUBE]...

 Compute a cube variable from other cube variables in CUBEs using a user-
 provided Python function in SCRIPT.

 The SCRIPT must define a function named "compute":

 def compute(*input_vars: numpy.ndarray,
 input_params: Mapping[str, Any] = None,
 dim_coords: Mapping[str, np.ndarray] = None,
 dim_ranges: Mapping[str, Tuple[int, int]] = None) \
 -> numpy.ndarray:
 # Compute new numpy array from inputs
 # output_array = ...
 return output_array

 where input_vars are numpy arrays (chunks) in the order given by VARIABLES
 or given by the variable names returned by an optional "initialize"
 function that my be defined in SCRIPT too, see below. input_params is a
 mapping of parameter names to values according to PARAMS or the ones
 returned by the aforesaid "initialize" function. dim_coords is a mapping
 from dimension name to coordinate labels for the current chunk to be
 computed. dim_ranges is a mapping from dimension name to index ranges into
 coordinate arrays of the cube.

 The SCRIPT may define a function named "initialize":

 def initialize(input_cubes: Sequence[xr.Dataset],
 input_var_names: Sequence[str],
 input_params: Mapping[str, Any]) \
 -> Tuple[Sequence[str], Mapping[str, Any]]:
 # Compute new variable names and/or new parameters
 # new_input_var_names = ...
 # new_input_params = ...
 return new_input_var_names, new_input_params

 where input_cubes are the respective CUBEs, input_var_names the respective
 VARIABLES, and input_params are the respective PARAMS. The "initialize"
 function can be used to validate the data cubes, extract the desired
 variables in desired order and to provide some extra processing parameters
 passed to the "compute" function.

 Note that if no input variable names are specified, no variables are
 passed to the "compute" function.

 The SCRIPT may also define a function named "finalize":

 def finalize(output_cube: xr.Dataset,
 input_params: Mapping[str, Any]) \
 -> Optional[xr.Dataset]:
 # Optionally modify output_cube and return it or return None
 return output_cube

 If defined, the "finalize" function will be called before the command
 writes the new cube and then exists. The functions may perform a cleaning
 up or perform side effects such as write the cube to some sink. If the
 functions returns None, the CLI will *not* write any cube data.

Options:
 --variables, --vars VARIABLES Comma-separated list of variable names.
 -p, --params PARAMS Parameters passed as 'input_params' dict to
 compute() and init() functions in SCRIPT.
 -o, --output OUTPUT Output path. Defaults to 'out.zarr'
 -f, --format FORMAT Output format.
 -N, --name NAME Output variable's name.
 -D, --dtype DTYPE Output variable's data type.
 --help

Example

$ xcube compute s3-olci-cube.zarr ./algoithms/s3-olci-ndvi.py

with ./algoithms/s3-olci-ndvi.py being:

TODO

Python API

The related Python API function is xcube.core.compute.compute_cube().

xcube dump

Synopsis

Dump contents of a dataset.

$ xcube dump --help

Usage: xcube dump [OPTIONS] INPUT

 Dump contents of an input dataset.

Options:
 --variable, --var VARIABLE
 Name of a variable (multiple allowed).
 -E, --encoding Dump also variable encoding information.
 --help Show this message and exit.

Example

$ xcube dump xcube_cube.zarr

xcube verify

Synopsis

Perform cube verification.

$ xcube verify --help

Usage: xcube verify [OPTIONS] CUBE

 Perform cube verification.

 The tool verifies that CUBE
 * defines the dimensions "time", "lat", "lon";
 * has corresponding "time", "lat", "lon" coordinate variables and that they
 are valid, e.g. 1-D, non-empty, using correct units;
 * has valid bounds variables for "time", "lat", "lon" coordinate
 variables, if any;
 * has any data variables and that they are valid, e.g. min. 3-D, all have
 same dimensions, have at least dimensions "time", "lat", "lon".

 If INPUT is a valid xcube dataset, the tool returns exit code 0. Otherwise a
 violation report is written to stdout and the tool returns exit code 3.

Options:
 --help Show this message and exit.

Python API

The related Python API functions are

	xcube.core.verify.verify_cube(), and

	xcube.core.verify.assert_cube().

xcube extract

Synopsis

Extract cube points.

$ xcube extract --help

Usage: xcube extract [OPTIONS] CUBE POINTS

 Extract data points from an xcube dataset.

 Extracts data cells from CUBE at coordinates given in each POINTS record
 and writes the resulting values to given output path and format.

 POINTS must be a CSV file that provides at least the columns "lon", "lat",
 and "time". The "lon" and "lat" columns provide a point's location in
 decimal degrees. The "time" column provides a point's date or date-time.
 Its format should preferably be ISO, but other formats may work as well.

Options:
 -o, --output OUTPUT Output path. If omitted, output is written to stdout.
 -f, --format FORMAT Output format. Currently, only 'csv' is supported.
 -C, --coords Include cube cell coordinates in output.
 -B, --bounds Include cube cell coordinate boundaries (if any) in
 output.
 -I, --indexes Include cube cell indexes in output.
 -R, --refs Include point values as reference in output.
 --help Show this message and exit.

Example

$ xcube extract xcube_cube.zarr -o point_data.csv -Cb --indexes --refs

Python API

Related Python API functions are

	xcube.core.extract.get_cube_values_for_points(),

	xcube.core.extract.get_cube_point_indexes(), and

	xcube.core.extract.get_cube_values_for_indexes().

xcube chunk

Synopsis

(Re-)chunk xcube dataset.

$ xcube chunk --help

Usage: xcube chunk [OPTIONS] CUBE

 (Re-)chunk xcube dataset. Changes the external chunking of all variables
 of CUBE according to CHUNKS and writes the result to OUTPUT.

 Note: There is a possibly more efficient way to (re-)chunk datasets
 through the dedicated tool "rechunker", see
 https://rechunker.readthedocs.io.

Options:
 -o, --output OUTPUT Output path. Defaults to 'out.zarr'
 -f, --format FORMAT Format of the output. If not given, guessed from
 OUTPUT.
 -p, --params PARAMS Parameters specific for the output format. Comma-
 separated list of <key>=<value> pairs.
 -C, --chunks CHUNKS Chunk sizes for each dimension. Comma-separated list of
 <dim>=<size> pairs, e.g. "time=1,lat=270,lon=270"
 --help Show this message and exit.

Example

$ xcube chunk input_not_chunked.zarr -o output_rechunked.zarr --chunks "time=1,lat=270,lon=270"

Python API

The related Python API function is xcube.core.chunk.chunk_dataset().

xcube edit

Synopsis

Edit metadata of an xcube dataset.

$ xcube edit --help

Usage: xcube edit [OPTIONS] CUBE

 Edit the metadata of an xcube dataset. Edits the metadata of a given CUBE.
 The command currently works only for data cubes using ZARR format.

Options:
 -o, --output OUTPUT Output path. The placeholder "{input}" will be
 replaced by the input's filename without extension
 (such as ".zarr"). Defaults to
 "{input}-edited.zarr".
 -M, --metadata METADATA The metadata of the cube is edited. The metadata to
 be changed should be passed over in a single yml
 file.
 -C, --coords Update the metadata of the coordinates of the xcube
 dataset.
 -I, --in-place Edit the cube in place. Ignores output path.
 --help Show this message and exit.

Examples

The global attributes of the demo xcube dataset demo cube-1-250-250.zarr [https://github.com/dcs4cop/xcube/tree/master/examples/serve/demo/cube-1-250-250.zarr] in the examples folder do not contain the creators name
not an url. Furthermore the long name of the variable ‘conc_chl’ is ‘Chlorophylll concentration’, with too many l’s.
This can be fixed by using xcube edit. A yml-file defining the key words to be changed with the new content has to
be created. The demo yml is saved in the examples folder [https://github.com/dcs4cop/xcube/tree/master/examples/edit/edit_metadata_cube-1-250-250.yml].

Edit the metadata of the existing xcube dataset cube-1-250-250-edited.zarr:

$ xcube edit /examples/serve/demo/cube-1-250-250.zarr -M examples/edit/edit_metadata_cube-1-250-250.yml -o cube-1-250-250-edited.zarr

The global attributes below, which are related to the xcube dataset coodrinates cannot be manually edited.

	geospatial_lon_min

	geospatial_lon_max

	geospatial_lon_units

	geospatial_lon_resolution

	geospatial_lat_min

	geospatial_lat_max

	geospatial_lat_units

	geospatial_lat_resolution

	time_coverage_start

	time_coverage_end

If you wish to update these attributes, you can use the commandline parameter -C:

$ xcube edit /examples/serve/demo/cube-1-250-250.zarr -C -o cube-1-250-250-edited.zarr

The -C will update the coordinate attributes based on information derived directly from the cube.

Python API

The related Python API function is xcube.core.edit.edit_metadata().

xcube level

Synopsis

Generate multi-resolution levels.

$ xcube level --help

Usage: xcube level [OPTIONS] INPUT

 Generate multi-resolution levels. Transform the given dataset by INPUT
 into the levels of a multi-level pyramid with spatial resolution
 decreasing by a factor of two in both spatial dimensions and write the
 result to directory OUTPUT.

Options:
 -o, --output OUTPUT Output path. If omitted, "INPUT.levels" will
 be used.
 -L, --link Link the INPUT instead of converting it to a
 level zero dataset. Use with care, as the
 INPUT's internal spatial chunk sizes may be
 inappropriate for imaging purposes.
 -t, --tile-size TILE_SIZE Tile size, given as single integer number or
 as <tile-width>,<tile-height>. If omitted,
 the tile size will be derived from the
 INPUT's internal spatial chunk sizes. If the
 INPUT is not chunked, tile size will be 512.
 -n, --num-levels-max NUM_LEVELS_MAX
 Maximum number of levels to generate. If not
 given, the number of levels will be derived
 from spatial dimension and tile sizes.
 --help Show this message and exit.

Example

$ xcube level --link -t 720 data/cubes/test-cube.zarr

Python API

The related Python API functions are

	xcube.core.level.compute_levels(),

	xcube.core.level.read_levels(), and

	xcube.core.level.write_levels().

xcube optimize

Synopsis

Optimize xcube dataset for faster access.

$ xcube optimize --help

Usage: xcube optimize [OPTIONS] CUBE

 Optimize xcube dataset for faster access.

 Reduces the number of metadata and coordinate data files in xcube dataset
 given by CUBE. Consolidated cubes open much faster especially from remote
 locations, e.g. in object storage, because obviously much less HTTP
 requests are required to fetch initial cube meta information. That is, it
 merges all metadata files into a single top-level JSON file ".zmetadata".
 Optionally, it removes any chunking of coordinate variables so they
 comprise a single binary data file instead of one file per data chunk. The
 primary usage of this command is to optimize data cubes for cloud object
 storage. The command currently works only for data cubes using ZARR
 format.

Options:
 -o, --output OUTPUT Output path. The placeholder "<built-in function
 input>" will be replaced by the input's filename
 without extension (such as ".zarr"). Defaults to
 "{input}-optimized.zarr".
 -I, --in-place Optimize cube in place. Ignores output path.
 -C, --coords Also optimize coordinate variables by converting any
 chunked arrays into single, non-chunked, contiguous
 arrays.
 --help Show this message and exit.

Examples

Write an cube with consolidated metadata to cube-optimized.zarr:

$ xcube optimize ./cube.zarr

Write an optimized cube with consolidated metadata and consolidated coordinate variables to optimized/cube.zarr
(directory optimized must exist):

$ xcube optimize -C -o ./optimized/cube.zarr ./cube.zarr

Optimize a cube in-place with consolidated metadata and consolidated coordinate variables:

$ xcube optimize -IC ./cube.zarr

Python API

The related Python API function is xcube.core.optimize.optimize_dataset().

xcube prune

Delete empty chunks.

Attention

This tool will likely be integrated into xcube optimize in the near future.

$ xcube prune --help

Usage: xcube prune [OPTIONS] DATASET

 Delete empty chunks. Deletes all data files associated with empty (NaN-
 only) chunks in given DATASET, which must have ZARR format.

Options:
 -v, --verbose Verbose mode. Multiple may be given, for example "-vvv".
 --dry-run Just read and process input, but don't produce any outputs.
 --help Show this message and exit.

A related Python API function is xcube.core.optimize.get_empty_dataset_chunks().

xcube resample

Synopsis

Resample data along the time dimension.

$ xcube resample --help

Usage: xcube resample [OPTIONS] CUBE

 Resample data along the time dimension.

Options:
 -c, --config CONFIG xcube dataset configuration file in YAML
 format. More than one config input file is
 allowed.When passing several config files,
 they are merged considering the order passed
 via command line.
 -o, --output OUTPUT Output path. Defaults to 'out.zarr'.
 -f, --format [zarr|netcdf4|mem]
 Output format. If omitted, format will be
 guessed from output path.
 --variables, --vars VARIABLES Comma-separated list of names of variables
 to be included.
 -M, --method TEXT Temporal resampling method. Available
 downsampling methods are 'count', 'first',
 'last', 'min', 'max', 'sum', 'prod', 'mean',
 'median', 'std', 'var', the upsampling
 methods are 'asfreq', 'ffill', 'bfill',
 'pad', 'nearest', 'interpolate'. If the
 upsampling method is 'interpolate', the
 option '--kind' will be used, if given.
 Other upsampling methods that select
 existing values honour the '--tolerance'
 option. Defaults to 'mean'.
 -F, --frequency TEXT Temporal aggregation frequency. Use format
 "<count><offset>" where <offset> is one of
 'H', 'D', 'W', 'M', 'Q', 'Y'. Defaults to
 '1D'.
 -O, --offset TEXT Offset used to adjust the resampled time
 labels. Uses same syntax as frequency. Some
 Pandas date offset strings are supported as
 well.
 -B, --base INTEGER For frequencies that evenly subdivide 1 day,
 the origin of the aggregated intervals. For
 example, for '24H' frequency, base could
 range from 0 through 23. Defaults to 0.
 -K, --kind TEXT Interpolation kind which will be used if
 upsampling method is 'interpolation'. May be
 one of 'zero', 'slinear', 'quadratic',
 'cubic', 'linear', 'nearest', 'previous',
 'next' where 'zero', 'slinear', 'quadratic',
 'cubic' refer to a spline interpolation of
 zeroth, first, second or third order;
 'previous' and 'next' simply return the
 previous or next value of the point. For
 more info refer to
 scipy.interpolate.interp1d(). Defaults to
 'linear'.
 -T, --tolerance TEXT Tolerance for selective upsampling methods.
 Uses same syntax as frequency. If the time
 delta exceeds the tolerance, fill values
 (NaN) will be used. Defaults to the given
 frequency.
 --dry-run Just read and process inputs, but don't
 produce any outputs.
 --help Show this message and exit.

Examples

Upsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 12H -T 6H -M interpolation -K linear examples/serve/demo/cube.nc

Downsampling example:

$ xcube resample --vars conc_chl,conc_tsm -F 3D -M mean -M std -M count examples/serve/demo/cube.nc

Python API

The related Python API function is xcube.core.resample.resample_in_time().

xcube vars2dim

Synopsis

Convert cube variables into new dimension.

$ xcube vars2dim --help

Usage: xcube vars2dim [OPTIONS] CUBE

 Convert cube variables into new dimension. Moves all variables of CUBE
 into into a single new variable <var-name> with a new dimension DIM-NAME
 and writes the results to OUTPUT.

Options:
 --variable, --var VARIABLE Name of the new variable that includes all
 variables. Defaults to "data".
 -D, --dim_name DIM-NAME Name of the new dimension into variables.
 Defaults to "var".
 -o, --output OUTPUT Output path. If omitted, 'INPUT-vars2dim.INPUT-
 FORMAT' will be used.
 -f, --format FORMAT Format of the output. If not given, guessed from
 OUTPUT.
 --help Show this message and exit.

Python API

The related Python API function is xcube.core.vars2dim.vars_to_dim().

xcube tile

Synopsis

Generate a tiled RGB image pyramid from any xcube dataset.

The format and file organisation of the generated tile sets conforms to the TMS 1.0 Specification [https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification].

An optional configuration file given by the -c option uses YAML format [https://en.wikipedia.org/wiki/YAML].

$ xcube tile --help

Usage: xcube tile [OPTIONS] CUBE

 Create RGBA tiles from CUBE.

 Color bars and value ranges for variables can be specified in a CONFIG
 file. Here the color mappings are defined for a style named "ocean_color":

 Styles:
 - Identifier: ocean_color
 ColorMappings:
 conc_chl:
 ColorBar: "plasma"
 ValueRange: [0., 24.]
 conc_tsm:
 ColorBar: "PuBuGn"
 ValueRange: [0., 100.]
 kd489:
 ColorBar: "jet"
 ValueRange: [0., 6.]

 This is the same styles syntax as the configuration file for "xcube
 serve", hence its configuration can be reused.

Options:
 --variables, --vars VARIABLES Variables to be included in output. Comma-
 separated list of names which may contain
 wildcard characters "*" and "?".
 --labels LABELS Labels for non-spatial dimensions, e.g.
 "time=2019-20-03". Multiple values are
 separated by comma.
 -t, --tile-size TILE_SIZE Tile size in pixels for individual or both x-
 and y-directions. Separate by comma for
 individual tile sizes, e.g. "-t 360,180".
 Defaults to the chunks sizes in x- and
 y-directions of CUBE, which may not be ideal.
 Use option --dry-run and --verbose to display
 the default tile sizes for CUBE.
 -c, --config CONFIG Configuration file in YAML format.
 -s, --style STYLE Name of a style identifier in CONFIG file.
 Only used if CONFIG is given. Defaults to
 'default'.
 -o, --output OUTPUT Output path. Defaults to 'out.tiles'
 -v, --verbose Use -vv to report all files generated, -v to
 report less.
 --dry-run Generate all tiles but don't write any files.
 --help Show this message and exit.

Example

An example that uses a configuration file only:

```bash







	xcube tile https://s3.eu-central-1.amazonaws.com/esdl-esdc-v2.0.0/esdc-8d-0.083deg-1x2160x4320-2.0.0.zarr 
	–labels time=’2009-01-01/2009-12-30’ –vars analysed_sst,air_temperature_2m –tile-size 270 –config ./config-cci-cfs.yml –style default –verbose








```

The configuration file config-cci-cfs.yml content is:


	```yaml
	
	Styles:
	
	Identifier: default
ColorMappings:



	analysed_sst:
	ColorBar: “inferno”
ValueRange: [270, 310]



	air_temperature_2m:
	ColorBar: “magma”
ValueRange: [190, 320]




















```


Python API

There is currently no related Python API.

xcube level

Synopsis

Generate multi-resolution levels.

$ xcube level --help

Usage: xcube level [OPTIONS] INPUT

 Generate multi-resolution levels. Transform the given dataset by INPUT
 into the levels of a multi-level pyramid with spatial resolution
 decreasing by a factor of two in both spatial dimensions and write the
 result to directory OUTPUT.

Options:
 -o, --output OUTPUT Output path. If omitted, "INPUT.levels" will
 be used.
 -L, --link Link the INPUT instead of converting it to a
 level zero dataset. Use with care, as the
 INPUT's internal spatial chunk sizes may be
 inappropriate for imaging purposes.
 -t, --tile-size TILE_SIZE Tile size, given as single integer number or
 as <tile-width>,<tile-height>. If omitted,
 the tile size will be derived from the
 INPUT's internal spatial chunk sizes. If the
 INPUT is not chunked, tile size will be 512.
 -n, --num-levels-max NUM_LEVELS_MAX
 Maximum number of levels to generate. If not
 given, the number of levels will be derived
 from spatial dimension and tile sizes.
 --help Show this message and exit.

Example

$ xcube level --link -t 720 data/cubes/test-cube.zarr

Python API

The related Python API functions are

	xcube.core.level.compute_levels(),

	xcube.core.level.read_levels(), and

	xcube.core.level.write_levels().

xcube serve

Synopsis

Serve data cubes via web service.

xcube serve starts a light-weight web server that provides various services based on xcube datasets:

	Catalogue services to query for xcube datasets and their variables and dimensions, and feature collections;

	Tile map service, with some OGC WMTS 1.0 compatibility (REST and KVP APIs);

	Dataset services to extract subsets like time-series and profiles for e.g. JavaScript clients.

$ xcube serve --help

Usage: xcube serve [OPTIONS] [CUBE]...

 Serve data cubes via web service.

 Serves data cubes by a RESTful API and a OGC WMTS 1.0 RESTful and KVP
 interface. The RESTful API documentation can be found at
 https://app.swaggerhub.com/apis/bcdev/xcube-server.

Options:
 -A, --address ADDRESS Service address. Defaults to 'localhost'.
 -P, --port PORT Port number where the service will listen on.
 Defaults to 8080.

 --prefix PREFIX Service URL prefix. May contain template patterns
 such as "${version}" or "${name}". For example
 "${name}/api/${version}". Will be used to prefix
 all API operation routes and in any URLs returned
 by the service.

 --revprefix REVPREFIX Service reverse URL prefix. May contain template
 patterns such as "${version}" or "${name}". For
 example "${name}/api/${version}". Defaults to
 PREFIX, if any. Will be used only in URLs returned
 by the service e.g. the tile URLs returned by the
 WMTS service.

 -u, --update PERIOD Service will update after given seconds of
 inactivity. Zero or a negative value will disable
 update checks. Defaults to 2.0.

 -S, --styles STYLES Color mapping styles for variables. Used only, if
 one or more CUBE arguments are provided and CONFIG
 is not given. Comma-separated list with elements of
 the form <var>=(<vmin>,<vmax>) or
 <var>=(<vmin>,<vmax>,"<cmap>")

 -c, --config CONFIG Use datasets configuration file CONFIG. Cannot be
 used if CUBES are provided. If not given and also
 CUBES are not provided, the configuration may be
 given by environment variable
 XCUBE_SERVE_CONFIG_FILE.

 -b, --base-dir BASE_DIR Base directory used to resolve relative dataset
 paths in CONFIG and relative CUBES paths. Defaults
 to value of environment variable
 XCUBE_SERVE_BASE_DIR, if given, otherwise defaults
 to the parent directory of CONFIG.

 --tilecache SIZE In-memory tile cache size in bytes. Unit suffixes
 'K', 'M', 'G' may be used. Defaults to '512M'. The
 special value 'OFF' disables tile caching.

 --tilemode MODE Tile computation mode. This is an internal option
 used to switch between different tile computation
 implementations. Defaults to 0.

 -s, --show Run viewer app. Requires setting the environment
 variable XCUBE_VIEWER_PATH to a valid xcube-viewer
 deployment or build directory. Refer to
 https://github.com/dcs4cop/xcube-viewer for more
 information.

 -v, --verbose Delegate logging to the console (stderr).
 --traceperf Print performance diagnostics (stdout).
 --aws-prof PROFILE To publish remote CUBEs, use AWS credentials from
 section [PROFILE] found in ~/.aws/credentials.

 --aws-env To publish remote CUBEs, use AWS credentials from
 environment variables AWS_ACCESS_KEY_ID and
 AWS_SECRET_ACCESS_KEY

 --help Show this message and exit.

Configuration File

The xcube server is used to configure the xcube datasets to be published.

xcube datasets are any datasets that

	that comply to Unidata’s CDM [https://www.unidata.ucar.edu/software/thredds/v4.3/netcdf-java/CDM/] and to the CF Conventions [http://cfconventions.org/];

	that can be opened with the xarray [https://xarray.pydata.org/en/stable/] Python library;

	that have variables that have at least the dimensions and shape (time, lat, lon), in exactly this order;

	that have 1D-coordinate variables corresponding to the dimensions;

	that have their spatial grid defined in the WGS84 (EPSG:4326) coordinate reference system.

The xcube server supports xcube datasets stored as local NetCDF files, as well as
Zarr [https://zarr.readthedocs.io/en/stable/] directories in the local file system or remote object storage.
Remote Zarr datasets must be stored in publicly accessible, AWS S3 compatible object storage (OBS).

As an example, here is the configuration of the demo server [https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/config.yml].
The parts of the demo configuration file are explained in detail further down.

Some hints before, which are not addressed in the server demo configuration file.
To increase imaging performance, xcube datasets can be converted to multi-resolution pyramids using the
cli/xcube_level tool. In the configuration, the format must be set to 'level'.
Leveled xcube datasets are configured this way:

Datasets:

 - Identifier: my_multi_level_dataset
 Title: "My Multi-Level Dataset"
 FileSystem: local
 Path: my_multi_level_dataset.level
 Format: level

 - ...

To increase time-series extraction performance, xcube datasets my be rechunked with larger chunk size in the time
dimension using the cli/xcube_chunk tool. In the xcube server configuration a hidden dataset is given,
and the it is referred to by the non-hidden, actual dataset using the TimeSeriesDataset setting:

Datasets:

 - Identifier: my_dataset
 Title: "My Dataset"
 FileSystem: local
 Path: my_dataset.zarr
 TimeSeriesDataset: my_dataset_opt_for_ts

 - Identifier: my_dataset_opt_for_ts
 Title: "My Dataset optimized for Time-Series"
 FileSystem: local
 Path: my_ts_opt_dataset.zarr
 Format: zarr
 Hidden: True

 - ...

Server Demo Configuration File

The server configuration file consists of various parts, some of them are necessary others are optional.
Here the demo configuration file [https://github.com/dcs4cop/xcube/blob/master/examples/serve/demo/config.yml] used in the example is explained in detail.

The configuration file consists of five main parts authentication, dataset-attribution, datasets,
place-groups and styles.

Authentication [optional]

In order to display data via xcube-viewer exclusively to registered and authorized users, the data served by xcube serve
may be protected by adding Authentication to the server configuration. In order to ensure protection, a Domain and an
Audience needs to be provided. Here authentication by Auth0 [https://auth0.com/] is used.

Authentication:
 Domain: xcube-dev.eu.auth0.com
 Audience: https://xcube-dev/api/

Dataset Attribution [optional]

Dataset Attribution may be added to the server via DatasetAttribution.

DatasetAttribution:
 - "© by Brockmann Consult GmbH 2020, contains modified Copernicus Data 2019, processed by ESA"
 - "© by EU H2020 CyanoAlert project"

Datasets [mandatory]

In order to publish selected xcube datasets via xcube serve the datasets need to be specified in the configuration
file of the server. Several xcube datasets may be served within one server, by providing a list of information
concerning the xcube datasets.

Remotely Stored xcube Datasets

Datasets:
 - Identifier: remote
 Title: Remote OLCI L2C cube for region SNS
 BoundingBox: [0.0, 50, 5.0, 52.5]
 FileSystem: obs
 Endpoint: "https://s3.eu-central-1.amazonaws.com"
 Path: "xcube-examples/OLCI-SNS-RAW-CUBE-2.zarr"
 Region: "eu-central-1"
 Style: default
 PlaceGroups:
 - PlaceGroupRef: inside-cube
 - PlaceGroupRef: outside-cube
 AccessControl:
 RequiredScopes:
 - read:datasets

The above example of how to specify a xcube dataset to be served above is using a datacube stored in
an S3 bucket within the OpenTelekomCloud.
Further down an example for a locally-stored-xcube-datasets will be given,
as well as an example of a on-the-fly-generation-of-xcube-datasets.

Identifier [mandatory] is a unique ID for each xcube dataset, it is ment for machine-to-machine interaction
and therefore does not have to be a fancy human-readable name.

Title [mandatory] should be understandable for humans and this is the title that will be displayed within the viewer
for the dataset selection.

BoundingBox [optional] may be set in order to restrict the region which is served from a certain datacube. The
notation of the BoundingBox is [lon_min,lat_min,lon_max,lat_max].

FileSystem [mandatory] is set to “obs” which lets xcube serve know, that the datacube is located in the cloud
(obs is the abbreviation for object storage).

Endpoint [mandatory] contains information about the cloud provider endpoint, this will differ if you use a different
cloud provider.

Path [mandatory] leads to the specific location of the datacube. The particular datacube is stored in an
OpenTelecomCloud S3 bucket called “xcube-examples” and the datacube is called “OLCI-SNS-RAW-CUBE-2.zarr”.

Region [mandatory] is the region where the specified cloud provider is operating.

Styles [optional] influence the visualization of the xucbe dataset in the xcube viewer if specified
in the server configuration file. The usage of Styles is described in section styles.

PlaceGroups [optional] allow to associate places (e.g. polygons or point-location) with a particular xcube dataset.
Several different place groups may be connected to a xcube dataset, these different place groups are distinguished by
the PlaceGroupRef. The configuration of PlaceGroups is described in section place-groups.

AccessControl [optional] can only be used when providing authentication. Datasets may be protected by
configuring the RequiredScopes entry whose value is a list of required scopes, e.g. “read:datasets”.

Locally Stored xcube Datasets

To serve a locally stored dataset the configuration of it would look like the example below:

- Identifier: local
 Title: "Local OLCI L2C cube for region SNS"
 BoundingBox: [0.0, 50, 5.0, 52.5]
 FileSystem: local
 Path: cube-1-250-250.zarr
 Style: default
 TimeSeriesDataset: local_ts
 Augmentation:
 Path: "compute_extra_vars.py"
 Function: "compute_variables"
 InputParameters:
 factor_chl: 0.2
 factor_tsm: 0.7
 PlaceGroups:
 - PlaceGroupRef: inside-cube
 - PlaceGroupRef: outside-cube
 AccessControl:
 IsSubstitute: true

Most of the configuration of locally stored datasets is equal to the configuration of
remotely-stored-xcube-datasets.

FileSystem [mandatory] is set to “local” which lets xcube serve know, that the datacube is locally stored.

TimeSeriesDataset [optional] is not bound to local datasets, this parameter may be used for remotely stored datasets
as well. By using this parameter a time optimized datacube will be used for generating the time series. The configuration
of this time optimized datacube is shown below. By adding Hidden with true to the dataset configuration, the time optimized
datacube will not appear among the displayed datasets in xucbe viewer.

Will not appear at all, because it is a "hidden" resource
- Identifier: local_ts
 Title: "'local' optimized for time-series"
 BoundingBox: [0.0, 50, 5.0, 52.5]
 FileSystem: local
 Path: cube-5-100-200.zarr
 Hidden: true
 Style: default

Augmentation [optional] augments data cubes by new variables computed on-the-fly, the generation of the on-the-fly
variables depends on the implementation of the python module specified in the Path within the Augmentation
configuration.

AccessControl [optional] can only be used when providing authentication. By passing the IsSubstitute flag
a dataset disappears for authorized requests. This might be useful for showing a demo dataset in the viewer for
user who are not logged in.

On-the-fly Generation of xcube Datasets

There is the possibility of generating resampled xcube datasets on-the-fly, e.g. in order to
obtain daily or weekly averages of a xcube dataset.

- Identifier: local_1w
 Title: OLCI weekly L3 cube for region SNS computed from local L2C cube
 BoundingBox: [0.0, 50, 5.0, 52.5]
 FileSystem: memory
 Path: "resample_in_time.py"
 Function: "compute_dataset"
 InputDatasets: ["local"]
 InputParameters:
 period: "1W"
 incl_stdev: True
 Style: default
 PlaceGroups:
 - PlaceGroupRef: inside-cube
 - PlaceGroupRef: outside-cube
 AccessControl:
 IsSubstitute: True

FileSystem [mandatory] is defined as “memory” for the on-the-fly generated dataset.

Path [mandatory] leads to the resample python module. There might be several functions specified in the
python module, therefore the particular Function needs to be included into the configuration.

InputDatasets [mandatory] specifies the dataset to be resampled.

InputParameter [mandatory] defines which kind of resampling should be performed.
In the example a weekly average is computed.

Again, the dataset may be associated with place groups.

Place Groups [optional]

Place groups are specified in a similar manner compared to specifying datasets within a server.
Place groups may be stored e.g. in shapefiles or a geoJson.

PlaceGroups:
 - Identifier: outside-cube
 Title: Points outside the cube
 Path: "places/outside-cube.geojson"
 PropertyMapping:
 image: "${base_url}/images/outside-cube/${ID}.jpg"

Identifier [mandatory] is a unique ID for each place group, it is the one xcube serve uses to associate
a place group to a particular dataset.

Title [mandatory] should be understandable for humans and this is the title that will be displayed within the viewer
for the place selection if the selected xcube dataset contains a place group.

Path [mandatory] defines where the file storing the place group is located.
Please note that the paths within the example config are relative.

PropertyMapping [mandatory] determines which information contained within the place group
should be used for selecting a certain location of the given place group. This depends very
strongly of the data used. In the above example, the image URL is determined by a feature’s ID property.

Property Mappings

The entry PropertyMapping is used to map a set of well-known properties (or roles) to the actual properties provided
by a place feature in a place group. For example, the well-known properties are used to in xcube viewer to display
information about the currently selected place.
The possible well-known properties are:

	label: The property that provides a label for the place, if any.
Defaults to to case-insensitive names label, title, name, id in xcube viewer.

	color: The property that provides a place’s color.
Defaults to the case-insensitive name color in xcube viewer.

	image: The property that provides a place’s image URL, if any.
Defaults to case-insensitive names image, img, picture, pic in xcube viewer.

	description: The property that provides a place’s description text, if any.
Defaults to case-insensitive names description, desc, abstract, comment in xcube viewer.

In the following example, a place’s label is provided by the place feature’s NAME property,
while an image is provided by the place feature’s IMG_URL property:

PlaceGroups:
 Identifier: my_group
 ...
 PropertyMapping:
 label: NAME
 image: IMG_URL

The values on the right side may either be feature property names or contain them as placeholders in the form
${PROPERTY}. A special placeholder is ${base_url} which is replaced by the server’s current base URL.

Styles [optional]

Within the Styles section colorbars may be defined which should be used initially for a certain variable of a dataset,
as well as the value ranges.
For xcube viewer version 0.3.0 or higher the colorbars and the value ranges may be adjusted by the user
within the xcube viewer.

Styles:
 - Identifier: default
 ColorMappings:
 conc_chl:
 ColorBar: "plasma"
 ValueRange: [0., 24.]
 conc_tsm:
 ColorBar: "PuBuGn"
 ValueRange: [0., 100.]
 kd489:
 ColorBar: "jet"
 ValueRange: [0., 6.]
 rgb:
 Red:
 Variable: conc_chl
 ValueRange: [0., 24.]
 Green:
 Variable: conc_tsm
 ValueRange: [0., 100.]
 Blue:
 Variable: kd489
 ValueRange: [0., 6.]

The ColorMapping may be specified for each variable of the datasets to be served.
If not specified, the server uses a default colorbar as well as a default value range.

rgb may be used to generate an RGB-Image on-the-fly within xcube viewer. This may be done if the dataset contains
variables which represent the bands red, green and blue, they may be combined to an RGB-Image. Or three variables
of the dataset may be combined to an RGB-Image, as shown in the configuration above.

Example

xcube serve --port 8080 --config ./examples/serve/demo/config.yml --verbose

xcube Server: WMTS, catalogue, data access, tile, feature, time-series services for xarray-enabled data cubes, version 0.2.0
[I 190924 17:08:54 service:228] configuration file 'D:\\Projects\\xcube\\examples\\serve\\demo\\config.yml' successfully loaded
[I 190924 17:08:54 service:158] service running, listening on localhost:8080, try http://localhost:8080/datasets
[I 190924 17:08:54 service:159] press CTRL+C to stop service

Web API

The xcube server has a dedicated Web API Documentation [https://app.swaggerhub.com/apis-docs/bcdev/xcube-server]
on SwaggerHub. It also lets you explore the API of existing xcube-servers.

The xcube server implements the OGC WMTS RESTful and KVP architectural styles of the
OGC WMTS 1.0.0 specification [http://www.opengeospatial.org/standards/wmts]. The following operations are supported:

	GetCapabilities: /xcube/wmts/1.0.0/WMTSCapabilities.xml

	GetTile: /xcube/wmts/1.0.0/tile/{DatasetName}/{VarName}/{TileMatrix}/{TileCol}/{TileRow}.png

	GetFeatureInfo: in progress

Python API

Cube I/O

Cube generation

	
xcube.core.new.new_cube(title='Test Cube', width=360, height=180, x_name='lon', y_name='lat', x_dtype='float64', y_dtype=None, x_units='degrees_east', y_units='degrees_north', x_res=1.0, y_res=None, x_start=- 180.0, y_start=- 90.0, inverse_y=False, time_name='time', time_dtype='datetime64[s]', time_units='seconds since 1970-01-01T00:00:00', time_calendar='proleptic_gregorian', time_periods=5, time_freq='D', time_start='2010-01-01T00:00:00', use_cftime=False, drop_bounds=False, variables=None, crs=None)

	Create a new empty cube. Useful for creating cubes templates with
predefined coordinate variables and metadata. The function is also
heavily used by xcube’s unit tests.

The values of the variables dictionary can be either constants,
array-like objects, or functions that compute their return value from
passed coordinate indexes. The expected signature is::

def my_func(time: int, y: int, x: int) -> Union[bool, int, float]

	Parameters

	
	title (str) – A title. Defaults to ‘Test Cube’.

	width (int) – Horizontal number of grid cells. Defaults to 360.

	height (int) – Vertical number of grid cells. Defaults to 180.

	x_name (str) – Name of the x coordinate variable. Defaults to ‘lon’.

	y_name (str) – Name of the y coordinate variable. Defaults to ‘lat’.

	x_dtype (str) – Data type of x coordinates. Defaults to ‘float64’.

	y_dtype – Data type of y coordinates. Defaults to ‘float64’.

	x_units (str) – Units of the x coordinates. Defaults to ‘degrees_east’.

	y_units (str) – Units of the y coordinates. Defaults to ‘degrees_north’.

	x_start (float) – Minimum x value. Defaults to -180.

	y_start (float) – Minimum y value. Defaults to -90.

	x_res (float) – Spatial resolution in x-direction. Defaults to 1.0.

	y_res – Spatial resolution in y-direction. Defaults to 1.0.

	inverse_y (bool) – Whether to create an inverse y axis. Defaults to False.

	time_name (str) – Name of the time coordinate variable. Defaults to ‘time’.

	time_periods (int) – Number of time steps. Defaults to 5.

	time_freq (str) – Duration of each time step. Defaults to `1D’.

	time_start (str) – First time value. Defaults to ‘2010-01-01T00:00:00’.

	time_dtype (str) – Numpy data type for time coordinates.
Defaults to ‘datetime64[s]’.
If used, parameter ‘use_cftime’ must be False.

	time_units (str) – Units for time coordinates.
Defaults to ‘seconds since 1970-01-01T00:00:00’.

	time_calendar (str) – Calender for time coordinates.
Defaults to ‘proleptic_gregorian’.

	use_cftime (bool) – If True, the time will be given as data types
according to the ‘cftime’ package. If used, the time_calendar
parameter must be also be given with an appropriate value
such as ‘gregorian’ or ‘julian’. If used, parameter ‘time_dtype’
must be None.

	drop_bounds (bool) – If True, coordinate bounds variables are not created.
Defaults to False.

	variables – Dictionary of data variables to be added.
None by default.

	crs – pyproj-compatible CRS string or instance
of pyproj.CRS or None

	Returns

	A cube instance

Cube computation

	
xcube.core.evaluate.evaluate_dataset(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], processed_variables: Optional[List[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]]]] = None, errors: str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise') → xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Compute new variables or mask existing variables in dataset
by the evaluation of Python expressions, that may refer to other
existing or new variables.
Returns a new dataset that contains the old and new variables,
where both may bew now masked.

Expressions may be given by attributes of existing variables in
dataset or passed a via the processed_variables argument
which is a sequence of variable name / attributes tuples.

Two types of expression attributes are recognized in the attributes:

	The attribute expression generates
a new variable computed from its attribute value.

	The attribute valid_pixel_expression masks out
invalid variable values.

In both cases the attribuite value must be a string that forms
a valid Python expression that can reference any other preceding
variables by name.
The expression can also reference any flags defined by another
variable according the their CF attributes flag_meaning
and flag_values.

Invalid variable values may be masked out using the value the
valid_pixel_expression attribute whose value should form
a Boolean Python expression. In case, the expression
returns zero or false, the value of the _FillValue attribute
or NaN will be used in the new variable.

Other attributes will be stored as variable metadata as-is.

	Parameters

	
	dataset – A dataset.

	processed_variables – Optional list of variable
name-attributes pairs that will processed in the given order.

	errors (str) – How to deal with errors while evaluating expressions.
May be be one of “raise”, “warn”, or “ignore”.

	Returns

	new dataset with computed variables

Cube data extraction

Cube manipulation

	
xcube.core.chunk.chunk_dataset(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], chunk_sizes: Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]] = None, format_name: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Chunk dataset using chunk_sizes and optionally
update encodings for given format_name.

	Parameters

	
	dataset – input dataset

	chunk_sizes – mapping from dimension name to new chunk size

	format_name (str) – optional format, e.g. “zarr” or “netcdf4”

	Returns

	the (re)chunked dataset

	
xcube.core.unchunk.unchunk_dataset(dataset_path: str [https://docs.python.org/3/library/stdtypes.html#str], var_names: Optional[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, coords_only: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Unchunk dataset variables in-place.

	Parameters

	
	dataset_path (str) – Path to ZARR dataset directory.

	var_names – Optional list of variable names.

	coords_only (bool) – Un-chunk coordinate variables only.

	
xcube.core.optimize.optimize_dataset(input_path: str, output_path: Optional[str] = None, in_place: bool = False, unchunk_coords: Union[bool, str, Sequence[str]] = False, exception_type: Type[Exception] = <class 'ValueError'>)

	Optimize a dataset for faster access.

Reduces the number of metadata and coordinate data files in xcube dataset given by given by dataset_path.
Consolidated cubes open much faster from remote locations, e.g. in object storage,
because obviously much less HTTP requests are required to fetch initial cube meta
information. That is, it merges all metadata files into a single top-level JSON file “.zmetadata”.

If unchunk_coords is given, it also removes any chunking of coordinate variables
so they comprise a single binary data file instead of one file per data chunk.
The primary usage of this function is to optimize data cubes for cloud object storage.
The function currently works only for data cubes using Zarr format.
unchunk_coords can be a name, or list of names of the coordinate variable(s) to be consolidated.
If boolean True is used, coordinate all variables will be consolidated.

	Parameters

	
	input_path (str) – Path to input dataset with ZARR format.

	output_path (str) – Path to output dataset with ZARR format. May contain “{input}” template string,
which is replaced by the input path’s file name without file name extension.

	in_place (bool) – Whether to modify the dataset in place.
If False, a copy is made and output_path must be given.

	unchunk_coords – The name of a coordinate variable or a list of coordinate variables whose chunks should
be consolidated. Pass True to consolidate chunks of all coordinate variables.

	exception_type – Type of exception to be used on value errors.

Cube subsetting

Cube masking

	
class xcube.core.maskset.MaskSet(flag_var: xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray])

	A set of mask variables derived from a variable flag_var with the following
CF attributes:

	One or both of flag_masks and flag_values

	flag_meanings (always required)

See https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#flags
for details on the use of these attributes.

Each mask is represented by an xarray.DataArray, has the name of the flag,
is of type numpy.unit8, and has the dimensions of the given flag_var.

	Parameters

	flag_var – an xarray.DataArray that defines flag values.
The CF attributes flag_meanings and one or both of
flag_masks and flag_values are expected to exist and be valid.

	
classmethod get_mask_sets(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]) → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], xcube.core.maskset.MaskSet]

	For each “flag” variable in given dataset, turn it into a MaskSet,
store it in a dictionary.

	Parameters

	dataset – The dataset

	Returns

	A mapping of flag names to MaskSet. Will be empty if there

are no flag variables in dataset.

Rasterisation of Features

Cube metadata

	
xcube.core.edit.edit_metadata(input_path: str, output_path: Optional[str] = None, metadata_path: Optional[str] = None, update_coords: bool = False, in_place: bool = False, monitor: Optional[Callable[[...], None]] = None, exception_type: Type[Exception] = <class 'ValueError'>)

	Edit the metadata of an xcube dataset.

Editing the metadata because it may be incorrect, inconsistent or incomplete.
The metadata attributes should be given by a yaml file with the keywords to be edited.
The function currently works only for data cubes using ZARR format.

	Parameters

	
	input_path (str) – Path to input dataset with ZARR format.

	output_path (str) – Path to output dataset with ZARR format. May contain “{input}” template string,
which is replaced by the input path’s file name without file name extentsion.

	metadata_path (str) – Path to the metadata file, which will edit the existing metadata.

	update_coords (bool) – Whether to update the metadata about the coordinates.

	in_place (bool) – Whether to modify the dataset in place.
If False, a copy is made and output_path must be given.

	monitor – A progress monitor.

	exception_type – Type of exception to be used on value errors.

	
xcube.core.update.update_dataset_attrs(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], global_attrs: Optional[Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]] = None, update_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, in_place: bool [https://docs.python.org/3/library/functions.html#bool] = False) → xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Update spatio-temporal CF/THREDDS attributes given dataset according
to spatio-temporal coordinate variables time, lat, and lon.

	Parameters

	
	dataset – The dataset.

	global_attrs – Optional global attributes.

	update_existing (bool) – If True, any existing attributes will be updated.

	in_place (bool) – If True, dataset will be modified in place and returned.

	Returns

	A new dataset, if in_place if False (default), else the passed and modified dataset.

	
xcube.core.update.update_dataset_spatial_attrs(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], update_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, in_place: bool [https://docs.python.org/3/library/functions.html#bool] = False) → xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Update spatial CF/THREDDS attributes of given dataset.

	Parameters

	
	dataset – The dataset.

	update_existing (bool) – If True, any existing attributes will be updated.

	in_place (bool) – If True, dataset will be modified in place and returned.

	Returns

	A new dataset, if in_place if False (default), else the passed and modified dataset.

	
xcube.core.update.update_dataset_temporal_attrs(dataset: xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], update_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, in_place: bool [https://docs.python.org/3/library/functions.html#bool] = False) → xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Update temporal CF/THREDDS attributes of given dataset.

	Parameters

	
	dataset – The dataset.

	update_existing (bool) – If True, any existing attributes will be updated.

	in_place (bool) – If True, dataset will be modified in place and returned.

	Returns

	A new dataset, if in_place is False (default), else the passed and modified dataset.

Cube verification

Multi-resolution pyramids

Utilities

Plugin Development

	
class xcube.util.extension.ExtensionRegistry

	A registry of extensions.
Typically used by plugins to register extensions.

	
has_extension(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Test if an extension with given point and name is registered.

	Return type

	bool

	Parameters

	
	point (str) – extension point identifier

	name (str) – extension name

	Returns

	True, if extension exists

	
get_extension(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional[xcube.util.extension.Extension]

	Get registered extension for given point and name.

	Parameters

	
	point (str) – extension point identifier

	name (str) – extension name

	Returns

	the extension or None, if no such exists

	
get_component(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any

	Get extension component for given point and name.
Raises a ValueError if no such extension exists.

	Parameters

	
	point (str) – extension point identifier

	name (str) – extension name

	Returns

	extension component

	
find_extensions(point: str [https://docs.python.org/3/library/stdtypes.html#str], predicate: Optional[Callable[[xcube.util.extension.Extension], bool [https://docs.python.org/3/library/functions.html#bool]]] = None) → List[xcube.util.extension.Extension]

	Find extensions for point and optional filter function predicate.

The filter function is called with an extension and should return
a truth value to indicate a match or mismatch.

	Parameters

	
	point (str) – extension point identifier

	predicate – optional filter function

	Returns

	list of matching extensions

	
find_components(point: str [https://docs.python.org/3/library/stdtypes.html#str], predicate: Optional[Callable[[xcube.util.extension.Extension], bool [https://docs.python.org/3/library/functions.html#bool]]] = None) → List[Any]

	Find extension components for point and optional filter function predicate.

The filter function is called with an extension and should return
a truth value to indicate a match or mismatch.

	Parameters

	
	point (str) – extension point identifier

	predicate – optional filter function

	Returns

	list of matching extension components

	
add_extension(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], component: Optional[Any] = None, loader: Optional[Callable[[xcube.util.extension.Extension], Any]] = None, **metadata) → xcube.util.extension.Extension

	Register an extension component or an extension component loader for
the given extension point, name, and additional metadata.

Either component or loader must be specified, but not both.

A given loader must be a callable with one positional argument extension of type Extension
and is expected to return the actual extension component, which may be of any type.
The loader will only be called once and only when the actual extension component
is requested for the first time. Consider using the function import_component() to create a
loader that lazily imports a component from a module and optionally executes it.

	Return type

	Extension

	Parameters

	
	point (str) – extension point identifier

	name (str) – extension name

	component – extension component

	loader – extension component loader function

	metadata – extension metadata

	Returns

	a registered extension

	
remove_extension(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Remove registered extension name from given point.

	Parameters

	
	point (str) – extension point identifier

	name (str) – extension name

	
to_dict()

	Get a JSON-serializable dictionary representation of this extension registry.

	
class xcube.util.extension.Extension(point: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], component: Optional[Any] = None, loader: Optional[Callable[[xcube.util.extension.Extension], Any]] = None, **metadata)

	An extension that provides a component of any type.

Extensions are registered in a ExtensionRegistry.

Extension objects are not meant to be instantiated directly. Instead,
ExtensionRegistry.add_extension() is used to register extensions.

	Parameters

	
	point – extension point identifier

	name – extension name

	component – extension component

	loader – extension component loader function

	metadata – extension metadata

	
property is_lazy: bool

	Whether this is a lazy extension that uses a loader.

	
property component: Any

	Extension component.

	
property point: str

	Extension point identifier.

	
property name: str

	Extension name.

	
property metadata: Dict[str, Any]

	Extension metadata.

	
to_dict() → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	Get a JSON-serializable dictionary representation of this extension.

	
xcube.util.extension.import_component(spec: str [https://docs.python.org/3/library/stdtypes.html#str], transform: Optional[Callable[[Any, xcube.util.extension.Extension], Any]] = None, call: bool [https://docs.python.org/3/library/functions.html#bool] = False, call_args: Optional[Sequence[Any]] = None, call_kwargs: Optional[Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any]] = None) → Callable[[xcube.util.extension.Extension], Any]

	Return a component loader that imports a module or module component from spec.
To import a module, spec should be the fully qualified module name. To import a
component, spec must also append the component name to the fully qualified module name
separated by a color (“:”) character.

An optional transform callable my be used to transform the imported component. If given,
a new component is computed:

component = transform(component, extension)

If the call flag is set, the component is expected to be a callable which will be called
using the given call_args and call_kwargs to produce a new component:

component = component(*call_kwargs, **call_kwargs)

Finally, the component is returned.

	Parameters

	
	spec (str) – String of the form “module_path” or “module_path:component_name”

	transform – callable that takes two positional arguments,
the imported component and the extension of type Extension

	call (bool) – Whether to finally call the component with given call_args and call_kwargs

	call_args – arguments passed to a callable component if call flag is set

	call_kwargs – keyword arguments passed to callable component if call flag is set

	Returns

	a component loader

	
xcube.constants.EXTENSION_POINT_INPUT_PROCESSORS = 'xcube.core.gen.iproc'

	The extension point identifier for input processor extensions

	
xcube.constants.EXTENSION_POINT_DATASET_IOS = 'xcube.core.dsio'

	The extension point identifier for dataset I/O extensions

	
xcube.constants.EXTENSION_POINT_CLI_COMMANDS = 'xcube.cli'

	The extension point identifier for CLI command extensions

	
xcube.util.plugin.get_extension_registry() → xcube.util.extension.ExtensionRegistry

	Get populated extension registry.

	
xcube.util.plugin.get_plugins() → Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Dict]

	Get mapping of “xcube_plugins” entry point names to JSON-serializable plugin meta-information.

Web API and Server

xcube’s RESTful web API is used to publish data cubes to clients. Using the API, clients can

	List configured xcube datasets;

	Get xcube dataset details including metadata, coordinate data, and metadata about all included variables;

	Get cube data;

	Extract time-series statistics from any variable given any geometry;

	Get spatial image tiles from any variable;

	Get places (GeoJSON features including vector data) that can be associated with xcube datasets.

Later versions of API will also allow for xcube dataset management including generation, modification, and deletion
of xcube datasets.

The complete description of all available functions is provided in the in the xcube Web API reference [https://app.swaggerhub.com/apis-docs/bcdev/xcube-server/0.2.0].

The web API is provided through the xcube server which is started using the xcube serve CLI command.

Viewer App

The xcube viewer app is a simple, single-page web application to be used with the xcube server.

Demo

To test the viewer app, you can use the xcube viewer demo [https://xcube-viewer.s3.eu-central-1.amazonaws.com/index.html].
When you open the page a message “cannot reach server” will appear. This is normal as the demo is configured to
run with an xcube server started locally on default port 8080, see Web API and Server. Hence, you can either run an xcube
server instance locally then reload the viewer page, or configure the viewer with an an existing xcube server.
To do so open the viewer’s settings panels, select “Server”. A “Select Server” panel is opened, click the “+”
button to add a new server. Here are two demo servers that you may add for testing:

	DCS4COP Demo Server (http://service.demo.dcs4cop.eu/xcube/api/latest) providing
ocean color variables in the North Sea area for the Data Cube Service for Copernicus [https://dcs4cop.eu/] (DCS4COP) EU project;

	ESDL Server (https://xcube.earthsystemdatalab.net) providing global essential climate variables (ECVs)
variables for the ESA Earth System Data Lab [https://www.earthsystemdatalab.net/].

Functionality

The xcube viewer functionality is described exemplary using the DCS4COP Demo viewer [http://viewer.demo.dcs4cop.eu].
The viewer visualizes data from the xcube datasets on top of a basemap.
For zooming use the buttons in the top right corner of the map window or the zooming function of your
computer mouse. A scale for the map is located in the lower right corner and in the
upper left corner a corresponding legend to the mapped data of the data cube is available.

[image: _images/screenshot_overview.png]
A xcube viewer may hold several xcube datasets which you can select via the drop-down menu Dataset.
The viewed area automatically adjusts to a selected xcube dataset, meaning that if a newly selected
dataset is located in a different region, the correct region is displayed on the map.

[image: _images/screenshot_datasets.png]
If more than one variable is available within a selected xcube dataset, you may change the variable by using the drop-down menu
Variable.

[image: _images/screenshot_variables.png]
To obtain a time series set a point marker on the map and then select the graph-icon next to the Variables drop-down
menu. You can select a different date by clicking into the time series graph on a value of interest. The data displayed
in the viewer changes accordingly to the newly selected date.

[image: _images/screenshot_timeseries.png]
The current date is preserved when you select a different variable and the data of the variable is mapped for the date.

[image: _images/screenshot_change_variable.png]
To generate a time series for the newly selected variable press the time series-icon again.

[image: _images/screenshot_timeseries_second_variable.png]
You may place multiple points on the map and you can generate time series for them. This allows a comparison between
two locations. The color of the points corresponds to the color of the graph in the time series. You can find the
coordinates of the point markers visualized in the time series beneath the graphs.

[image: _images/screenshot_timeseries_second_location.png]
To delete a created location use the remove-icon next to the Place drop-down menu.
Not only point location may be selected via the viewer, you can draw polygons and circular areas by using the icons on
the right-hand side of the Place drop-down menu as well. You can visualize time series for areas, too.

[image: _images/screenshot_polygon.png]
[image: _images/screenshot_circle.png]
In order to change the date for the data display use the calendar or step through the time line with the
arrows on the right-hand side of the calendar.

[image: _images/screenshot_calendar.png]
When a time series is displayed two time-line tools are visible, the upper one for selecting the date displayed
on the map of the viewer and the lower one may be used to narrow the time frame displayed in the time series graph.
Just above the graph of the time series on the right-hand side is an x-icon for removing the time series from the
view and to left of it is an icon which sets the time series back to the whole time extent.

[image: _images/screenshot_timeline.png]
To adjust the default settings select the Settings-icon on the very top right corner.
There you have the possibility to change the server url, in order to view data which is available via a different server.
You can choose a different language - if available - as well as set your preferences of displaying data and graph of the time series.

On the very bottom of the Settings pop-up window you can see information about the viewer and server version.

[image: _images/screenshot_settings.png]
Furthermore, if you would like to change the value ranges of the displayed variable you can do it by clicking into the area of the
legend where the value ticks are located.

[image: _images/screenshot_value_ranges.png]
You can change the color mapping as well by clicking into the color range of the legend.

[image: _images/screenshot_colormap.png]
The xcube viewer app is constantly evolving and enhancements are added, therefore please be aware that the above described features
may not always be completely up-to-date.

Build and Deploy

You can also build and deploy your own viewer instance. In the latter case, visit the xcube-viewer [https://github.com/dcs4cop/xcube-viewer] repository
on GitHub and follow the instructions provides in the related README [https://github.com/dcs4cop/xcube-viewer/blob/master/README.md] file.

The xcube generator

Introduction

The generator is an xcube feature which allows users to create,
manipulate, and write xcube datasets according to a supplied
configuration. The same configuration can be used to generate a dataset
on the user’s local computer or remotely, using an online server.

The generator offers two main user interfaces: A Python API, configured
using Python objects; and a command-line interface, configured using
YAML or JSON files. The Python and file-based configurations have the
same structure and are interconvertible.

The online generator service interfaces with the xcube client via a
well-defined REST API; it is also possible for third-party clients to
make use of this API directly, though it is expected that the Python and
command-line interfaces will be more convenient in most cases.

Further documentation

This document aims to provide a brief overview of the generation process
and the available configuration options. More details are available in
other documents and in the code itself:

	Probably the most thorough documentation is available in the Jupyter
demo
notebooks [https://github.com/dcs4cop/xcube/tree/master/examples/notebooks/generators]
in the xcube repository. These can be run in any JupyterLab
environment [https://jupyterlab.readthedocs.io/en/latest/]
containing an xcube installation. They combine explanation with
interactive worked examples to demonstrate practical usage of the
generator in typical use cases.

	For the Python API in particular, the xcube API
documentation [https://xcube.readthedocs.io/en/latest/api.html#]
is generated from the docstrings included in the code itself and
serves as a detailed low-level reference for individual Python
classes and methods. The docstrings can also be read from a Python
environment (e.g. using the ? postfix in IPython or JupyterLab)
or, of course, by browsing the source code itself.

	For the YAML/JSON configuration syntax used with the command-line
interface, there are several examples available in the
examples/gen2/configs
subdirectory [https://github.com/dcs4cop/xcube/tree/master/examples/gen2/configs]
of the xcube repository.

	For the REST API underlying the Python and command-line interfaces,
there is a formal definition on
SwaggerHub [https://app.swaggerhub.com/apis/bcdev/xcube-generator_api/], and
one of the example
notebooks [https://github.com/dcs4cop/xcube/tree/master/examples/notebooks/generators/5_rest_api.ipynb]
demonstrates its usage with the Python requests library.

The generation process

The usual cube generation process is as follows:

	The generator opens the input data store using the store identifier
and parameters in the input configuration.

	The generator reads from the input store the data specified in the
cube configuration and uses them to create a data cube, often with
additional manipulation steps such as resampling the data.

	If an optional code configuration has been given, the user-supplied
code is run on the created data cube, potentially modifying it.

	The generator writes the generated cube to the data store specified
in the output configuration.

Invoking the generator from a Python environment

The configurations for the various parts of the generator are used to
initialize a GeneratorRequest, which is then passed to
xcube.core.gen2.generator.CubeGenerator.generate_cube. The
generate_cube method returns a cube reference which can be used to
open the cube from the output data store.

The generator can also be directly invoked with a configuration file
from a Python environment, using the
xcube.core.gen2.generator.CubeGenerator.from_file method.

Invoking the generator from the command line

The generator can be invoked from the command line using the
xcube gen2 subcommand. (Note: the subcommand xcube gen invokes
an earlier, deprecated generator feature which is not compatible with
the generator framework described here.)

Configuration syntax

All Python configuration classes are defined in the xcube.core.gen2
package, except for CodeConfig, which is in xcube.core.byoa.

The types in the parameter tables are given in an ad-hoc, semi-formal
notation whose corresponding Python and JSON representations should be
obvious. For the formal Python type definitions, see the signatures of
the __init__ methods of the configuration classes; for the formal
JSON type definitions, see the JSON schemata (in JSON Schema
format [https://json-schema.org/]) produced by the get_schema
methods of the configuration classes.

Remote generator service configuration

The command-line interface allows a service configuration for the
remote generator service to be provided as a YAML or JSON file. This
file defines the endpoint and access credentials for an online generator
service. If it is provided, the specified remote service will be used to
generate the cube. If it is omitted, the cube will be generated locally.
The configuration file defines three values: endpoint_url,
client_id, and client_secret. A typical service configuration
YAML file might look as follows:

endpoint_url: "https://xcube-gen.brockmann-consult.de/api/v2/"
client_id: "93da366d7c39517865e4f141ddf1dd81"
client_secret: "d2l0aG91dCByZXN0cmljdGlvbiwgaW5jbHVkaW5nIHd"

Store configuration

In the command-line interface, an additional YAML or JSON file
containing one or more store configurations may be supplied. A store
configuration encapsulates a data store ID and an associated set of
store parameters, which can then be referenced by an associated store
configuration identifier. This identifier can be used in the input
configuration, as described below. A typical YAML store configuration
might look as follows:

sentinelhub_eu:
 title: SENTINEL Hub (Central Europe)
 description: Datasets from the SENTINEL Hub API deployment in Central Europe
 store_id: sentinelhub
 store_params:
 api_url: https://services.sentinel-hub.com
 client_id: myid123
 client_secret: 0c5892208a0a82f1599df026b5e19017

cds:
 title: C3S Climate Data Store (CDS)
 description: Selected datasets from the Copernicus CDS API
 store_id: cds
 store_params:
 normalize_names: true
 num_retries: 3

my_data_bucket:
 title: S3 output bucket
 description: An S3 bucket for output data sets
 store_id: s3
 store_params:
 root: cube-outputs
 storage_options:
 key: qwerty12345
 secret: 7ff889c0aea254d5e00440858289b85c
 client_kwargs:
 endpoint_url: https://my-endpoint.some-domain.org/

Input configuration

The input configuration defines the data store from which data for the
cube are to be read, and any additional parameters which this data store
requires.

The Python configuration object is InputConfig; the corresponding
YAML configuration section is input_configs.

	Parameter

	Required?

	Type

	Description

	store_id

	N

	str

	Identifier for the data store

	opener_id

	N

	str

	Identifier for the data opener

	data_id

	Y

	str

	Identifier for the dataset

	store_params

	N

	map(str→*)

	Parameters for the data store

	open_params

	N

	map(str→*)

	Parameters for the data opener

store_id is a string identifier for a particular xcube data store,
defined by the data store itself. If a store configuration file has been
supplied (see above), a store configuration identifier can also be
supplied here in place of a ‘plain’ store identifier. Store
configuration identifiers must be prefixed by an @ symbol. If a
store configuration identifier is supplied in place of a store
identifier, store_params values will be supplied from the predefined
store configuration and can be omitted from the input configuration.

data_id is a string identifier for the dataset within a particular
store.

The format and content of the store_params and open_params
dictionaries is defined by the individual store or opener.

The generator service does not yet provide a remote interface to list
available data stores, datasets, and store parameters (i.e. allowed
values for the parameters in the table above). In a local xcube Python
environment, you can list the currently available store identifiers with
the expression
list(map(lambda e: e.name, xcube.core.store.find_data_store_extensions())).
You can create a local store object for an identifier store_id with
xcube.core.store.get_data_store_instance(store_id).store. The store
object provides methods get_data_ids,
get_data_store_params_schema, and get_open_data_params_schema to
describe the allowed values for the corresponding parameters. Note that
the available stores and datasets on a remote xcube generator server may
not be the same as those available in your local xcube environment.

Cube configuration

This configuration element defines the characteristics of the cube that
should be generated. The Python configuration class is called
CubeConfig, and the YAML section cube_config. All parameters are
optional and will be filled in with defaults if omitted; the default
values are dependent on the data store and dataset.

	Parameter

	Type

	Units/Description

	variable_names

	[str, …]

	Available variables
are data store
dependent.

	crs

	str

	PROJ string, JSON
string with PROJ
parameters, CRS WKT
string, or authority
string

	bbox

	[float, float, float,
float]

	Bounding-box
(min_x,
min_y, max_x,
max_y)
CRS-dependent,
usually degrees

	spatial_res

	float or [float,
float]

	CRS-dependent,
usually degrees

	tile_size

	int or [int, int]

	pixels

	time_range

	str or [str, str]

	ISO 8601 subset

	time_period

	str

	integer + unit

	chunks

	map(str→null/int)

	maps variable names
to chunk sizes

The crs parameter string is interpreted using `CRS.from_string
in the pyproj
package <https://pyproj4.github.io/pyproj/dev/api/crs/crs.html#pyproj.crs.CRS.from_string>`__
and therefore accepts the same specifiers.

time_range specified the start and end of the requested time range.
can be specified either as a date in the format YYYY-MM-DD or as a
date and time in the format YYYY-MM-DD HH:MM:SS. If the time is
omitted, it is taken to be 00:00:00 (the start of the day) for the
start specifier and 24:00:00 (the end of the day) for the specifier.
The end specifier may be omitted; in this case the current time is used.

time_period specified the duration of a single time step in the
requested cube, which determines the temporal resolution. It consists of
an integer denoting the number of time units, followed by single
upper-case letter denoting the time unit. Valid time unit specifiers are
D (day), W (week), M (month), and Y (year). Examples of time_period
values: 1Y (one year), 2M (two months), 10D (ten days).

The value of the chunks mapping determines how the generated data is
chunked for storage. The chunking has no effect on the data itself, but
can have a dramatic impact on data access speeds in different scenarios.
The value of chunks is structured a map from variable names
(corresponding to those specified by the variable_names parameter)
to chunk sizes.

Code configuration

The code configuration supports multiple ways to define a dataset
processor – fundamentally, a Python function which takes a dataset and
returns a processed version of the input dataset. Since the code
configuration can work directly with instantiated Python objects (which
can’t be stored in a YAML file), there are some differences in code
configuration between the Python API and the YAML format.

	Parameter

	Type

	Units/description

	_callable †

	Callable

	Function to be
called to process
the datacube. Only
available via Python
API

	callable_ref

	str (non-empty)

	A reference to a
Python class or
function, in the
format
<module>:<
function_or_class>

	callable_params

	map(str→*)

	Parameters to be
passed to the
specified callable

	inline_code †

	str (non-empty)

	An inline snippet of
Python code

	file_set †

	FileSet (Python) /
map (YAML)

	A bundle of Python
modules or packages
(see details below)

	install_required

	boolean

	If set, indicates
that file_set
contains modules or
packages to be
installed.

All parameters are optional (as is the entire code configuration
itself). The three parameters marked † are mutually exclusive: at most
one of them may be given.

_callable provides the dataset processor directly and is only
available in the Python API. It must be either a function or a class.

	If a function, it takes a Dataset and optional additional named
parameters, and returns a Dataset. Any additional parameters are
supplied in the callable_params parameter of the code
configuration.

	If an object, it must implement a method process_dataset, which
is treated like the function described above, and may optionally
implement a class method get_process_params_schema, which returns
a JsonObjectSchema describing the additional parameters. For
convenience and clarity, the object may extend the abstract base
class DatasetProcessor, which declares both these methods.

callable_ref is a string with the structure
<module>:<function_or_class>, and specifies the function or class to
call when inline_code or file_set is provided. The specified
function or class is handled like the _callable parameter described
above.

callable_params specifies a dictionary of named parameters which are
passed to the processor function or method.

inline_code is a string containing Python source code. If supplied,
it should contain the definition of a function or object as described
for the _callable parameter. The module and class identifiers for
the callable in the inline code snippet should be specified in
callable_ref parameter.

file_set specifies a set of files which should be read from an
fsspec [https://filesystem-spec.readthedocs.io/] file system and
which contain a definition of a dataset processor. As with
inline_code, the parameter callable_ref should also be supplied
to tell the generator which class or function in the file set is the
actual processor. The parameters of file_set are identical with
those of the constructor of the corresponding Python FileSet class,
and are as follows:

	Parameter

	Type

	Description

	path

	str

	fsspec-compatible root
path specifier

	sub_path

	str

	optional sub-path to
append to main path

	includes

	[str]

	include files matching any
of these patterns

	excludes

	[str]

	exclude files matching any
of these patterns

	storage_params

	map(str→*)

	FS-specific parameters
(passed to fsspec)

Output configuration

This configuration element determines where the generated cube should be
written to. The Python configuration class is called OutputConfig,
and the YAML section output_config.

	Parameter

	Type

	Units/description

	store_id

	str

	Identifier of output store

	writer_id

	str

	Identifier of data writer

	data_id

	str

	Identifier under which to
write the cube

	store_params

	map(str→*)

	Store-dependent parameters
for output store

	write_params

	map(str→*)

	Writer-dependent parameters
for output writer

	replace

	bool

	If true, replace any
existing data with the same
identifier.

xcube Dataset Specification

This document provides a technical specification of the protocol and
format for xcube datasets, data cubes in the xcube sense.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in
RFC 2119 [https://www.ietf.org/rfc/rfc2119.txt].

Document Status

This is the latest version, which is still in development.

Version: 1.0, draft

Updated: 31.05.2018

Motivation

For many users of Earth observation data, multivariate coregistration,
extraction, comparison, and analysis of different data sources is
difficult, while data is provided in various formats and at different
spatio-temporal resolutions.

High-level requirements

xcube datasets

	SHALL be time series of gridded, geo-spatial, geo-physical variables.

	SHALL use a common, equidistant, global or regional geo-spatial grid.

	SHALL shall be easy to read, write, process, generate.

	SHALL conform to the requirements of analysis ready data (ARD).

	SHALL be compatible with existing tools and APIs.

	SHALL conform to standards or common practices and follow a common
data model.

	SHALL be formatted as self-contained datasets.

	SHALL be “cloud ready”, in the sense that subsets of the data can be
accessed by individual URIs.

ARD links:

	http://ceos.org/ard/

	https://landsat.usgs.gov/ard

	https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815

xcube Dataset Schemas

Basic Schema

	Attributes metadata convention

	SHALL be CF [http://cfconventions.org/] >= 1.7

	SHOULD adhere to
Attribute Convention for Data Discovery [http://wiki.esipfed.org/index.php/Attribute_Convention_for_Data_Discovery]

	Dimensions:

	SHALL be at least time, bnds, and MAY be any others.

	SHALL all be greater than zero, but bnds must always be two.

	Temporal coordinate variables:

	SHALL provide time coordinates for given time index.

	MAY be non-equidistant or equidistant.

	time[time] SHALL provide observation or average time of
cell centers.

	time_bnds[time, bnds] SHALL provide observation or integration
time of cell boundaries.

	Attributes:

	Temporal coordinate variables MUST have units, standard_name,
and any others.

	standard_name MUST be "time", units MUST have format
"<deltatime> since <datetime>", where datetime must have
ISO-format. calendar may be given, if not, "gregorian" is
assumed.

	Spatial coordinate variables

	SHALL provide spatial coordinates for given spatial index.

	SHALL be equidistant in either angular or metric units

	Cube variables:

	SHALL provide cube cells with the dimensions as index.

	SHALL have shape

	[time, ..., lat, lon] (see WGS84 schema) or

	[time, ..., y, x] (see Generic schema)

	MAY have extra dimensions, e.g. layer (of the atmosphere),
band (of a spectrum).

	SHALL specify the units metadata attribute.

	SHOULD specify metadata attributes that are used to identify
missing values, namely _FillValue and / or valid_min,
valid_max, see notes in CF conventions on these attributes.

	MAY specify metadata attributes that can be used to visualise the
data:

	color_bar_name: Name of a predefined colour mapping.
The colour bar is applied between a minimum and a maximum value.

	color_value_min, color_value_max: Minimum and maximum value
for applying the colour bar. If not provided, minimum and maximum
default to valid_min, valid_max. If neither are provided,
minimum and maximum default to 0 and 1.

WGS84 Schema (extends Basic)

	Dimensions:

	SHALL be at least time, lat, lon, bnds, and MAY be any
others.

	Spatial coordinate variables:

	SHALL use WGS84 (EPSG:4326) CRS.

	SHALL have lat[lat] that provides observation or average latitude
of cell centers
with attributes: standard_name="latitude" units="degrees_north".

	SHALL have lon[lon] that provides observation or average longitude
of cell centers with attributes: standard_name="longitude" and
units="degrees_east".

	SHOULD HAVE lat_bnds[lat, bnds], lon_bnds[lon, bnds]: provide
geodetic observation or integration coordinates of
cell boundaries.

	Cube variables:

	SHALL have shape [time, ..., lat, lon].

Generic Schema (extends Basic)

	Dimensions: time, y, x, bnds, and any others.

	SHALL be at least time, y, x, bnds, and MAY be any others.

	Spatial coordinate variables:

	Any spatial grid and CRS.

	y[y], x[x]: provide spatial observation or average coordinates
of cell centers.

	Attributes: standard_name, units, other units describe the
CRS / projections, see CF.

	y_bnds[y, bnds], x_bnds[x, bnds]: provide spatial observation
or integration coordinates of cell boundaries.

	MAY have lat[y,x]: latitude of cell centers.

	Attributes: standard_name="latitude", units="degrees_north".

	lon[y,x]: longitude of cell centers.

	Attributes: standard_name="longitude", units="degrees_east".

	Cube variables:

	MUST have shape [time, ..., y, x].

xcube EO Processing Levels

This section provides an attempt to characterize xcube datasets
generated from Earth Observation (EO) data according to their
processing levels as they are commonly used in EO data processing.

Level-1C and Level-2C

	Generated from Level-1A, -1B, -2A, -2B EO data.

	Spatially resampled to common grid

	Typically resampled at original resolution.

	May be down-sampled: aggregation/integration.

	May be upsampled: interpolation.

	No temporal aggregation/integration.

	Temporally non-equidistant.

Level-3

	Generated from Level-2C or -3 by temporal aggregation.

	No spatial processing.

	Temporally equidistant.

	Temporally integrated/aggregated.

xcube Developer Guide

Version 0.2, draft

IMPORTANT NOTE: Any changes to this doc must be reviewed by dev-team
through pull requests.

Table of Contents

	Versioning

	Coding Style

	Main Packages

	Package xcube.core

	Package xcube.cli

	Package xcube.webapi

	Package xcube.util

	Development Process

Versioning

We adhere to PEP-440 [https://www.python.org/dev/peps/pep-0440/].
Therefore, the xcube software version uses the format
<major>.<minor>.<micro> for released versions and
<major>.<minor>.<micro>.dev<n> for versions in development.

	<major> is increased for major enhancements.
CLI / API changes may introduce incompatibilities with former version.

	<minor> is increased for new features and and minor enhancements.
CLI / API changes are backward compatible with former version.

	<micro> is increased for bug fixes and micro enhancements.
CLI / API changes are backward compatible with former version.

	<n> is increased whenever the team (internally) deploys new builds
of a development snapshot.

The current software version is in xcube/version.py.

Coding Style

We follow PEP-8 [https://www.python.org/dev/peps/pep-0008/], including
its recommendation of PEP-484 [https://www.python.org/dev/peps/pep-0484/]
syntax for type hints.

Updating code style in the existing codebase

A significant portion of the existing codebase does not adhere to our current
code style guidelines. It is of course a goal to bring these parts into
conformance with the style guide, but major style changes should not be
bundled into pull requests focused on other improvements or bug fixes, because
they obscure the significant code changes and make reviews difficult.
Large-scale style and formatting updates should instead be made via dedicated
pull requests.

Line length

As recommended in PEP-8, all lines should be limited to a maximum of 79
characters, including docstrings and comments.

Quotation marks for string literals

In general, single quotation marks should always be used for string literals.
Double quotation marks should only be used if there is a compelling reason to
do so in a particular case.

Main Packages

	xcube.core - Hosts core API functions.
Code in here should be maintained w.r.t. backward compatibility.
Therefore think twice before adding new or change existing core API.

	xcube.cli - Hosts CLI commands.
CLI command implementations should be lightweight.
Move implementation code either into core or util.
CLI commands must be maintained w.r.t. backward compatibility.
Therefore think twice before adding new or change existing CLI
commands.

	xcube.webapi - Hosts Web API functions.
Web API command implementations should be lightweight.
Move implementation code either into core or util.
Web API interface must be maintained w.r.t. backward compatibility.
Therefore think twice before adding new or change existing web API.

	xcube.util - Mainly implementation helpers.
Comprises classes and functions that are used by cli, core,
webapi in order to maximize modularisation and testability but to
minimize code duplication.
The code in here must not be dependent on any of cli, core,
webapi. The code in here may change often and in any way as desired
by code implementing the cli, core, webapi packages.

The following sections will guide you through extending or changing the
main packages that form xcube’s public interface.

Package xcube.cli

Checklist

Make sure your change

	is covered by unit-tests (package test/cli);

	is reflected by the CLI’s doc-strings and tools documentation
(currently in README.md);

	follows existing xcube CLI conventions;

	follows PEP8 conventions;

	is reflected in API and WebAPI, if desired;

	is reflected in CHANGES.md.

Hints

Make sure your new CLI command is in line with the others commands
regarding command name, option names, as well as metavar arguments
names. The CLI command name shall ideally be a verb.

Avoid introducing new option arguments if similar options are already
in use for existing commands.

In the following common arguments and options are listed.

Input argument:

@click.argument('input')

If input argument is restricted to an xcube dataset:

@click.argument('cube')

Output (directory) option:

@click.option('--output', '-o', metavar='OUTPUT',
 help='Output directory. If omitted, "INPUT.levels" will be used.')

Output format:

@click.option('--format', '-f', metavar='FORMAT', type=click.Choice(['zarr', 'netcdf']),
 help="Format of the output. If not given, guessed from OUTPUT.")

Output parameters:

@click.option('--param', '-p', metavar='PARAM', multiple=True,
 help="Parameter specific for the output format. Multiple allowed.")

Variable names:

@click.option('--variable',--var', metavar='VARIABLE', multiple=True,
 help="Name of a variable. Multiple allowed.")

For parsing CLI inputs, use helper functions that are already in use.
In the CLI command implementation code, raise
click.ClickException(message) with a clear message for users.

Common xcube CLI options like -f for FORMAT should be lower case
letters and specific xcube CLI options like -S for SIZE in xcube gen
are recommended to be uppercase letters.

Extensively validate CLI inputs to avoid that API functions raise
ValueError, TypeError, etc. Such errors and their message texts are
usually hard to understand by users. They are actually dedicated to
to developers, not CLI users.

There is a global option --traceback flag that user can set to dump
stack traces. You don’t need to print stack traces from your code.

Package xcube.core

Checklist

Make sure your change

	is covered by unit-tests (package test/core);

	is covered by API documentation;

	follows existing xcube API conventions;

	follows PEP8 conventions;

	is reflected in xarray extension class xcube.core.xarray.DatasetAccessor;

	is reflected in CLI and WebAPI if desired;

	is reflected in CHANGES.md.

Hints

Create new module in xcube.core and add your functions.
For any functions added make sure naming is in line with other API.
Add clear doc-string to the new API. Use Sphinx RST format.

Decide if your API methods requires xcube datasets as
inputs, if so, name the primary dataset argument cube and add a
keyword parameter cube_asserted: bool = False.
Otherwise name the primary dataset argument dataset.

Reflect the fact, that a certain API method or function operates only
on datasets that conform with the xcube dataset specifications by
using cube in its name rather than dataset. For example
compute_dataset can operate on any xarray datasets, while
get_cube_values_for_points expects a xcube dataset as input or
read_cube ensures it will return valid xcube datasets only.

In the implementation, if not cube_asserted,
we must assert and verify the cube is a cube.
Pass True to cube_asserted argument of other API called later on:

from xcube.core.verify import assert_cube

def frombosify_cube(cube: xr.Dataset, ..., cube_asserted: bool = False):
 if not cube_asserted:
 assert_cube(cube)
 ...
 result = bibosify_cube(cube, ..., cube_asserted=True)
 ...

If import xcube.core.xarray is imported in client code, any xarray.Dataset
object will have an extra property xcube whose interface is defined
by the class xcube.core.xarray.DatasetAccessor. This class is an
xarray extension [http://xarray.pydata.org/en/stable/internals.html#extending-xarray]
that is used to reflect xcube.core functions and make it directly
applicable to the xarray.Dataset object.

Therefore any xcube API shall be reflected in this extension class.

Package xcube.webapi

Checklist

Make sure your change

	is covered by unit-tests (package test/webapi);

	is covered by Web API specification and documentation (currently in
webapi/res/openapi.yml);

	follows existing xcube Web API conventions;

	follows PEP8 conventions;

	is reflected in CLI and API, if desired;

	is reflected in CHANGES.md.

Hints

	The Web API is defined in webapi.app which defines mapping from
resource URLs to handlers

	All handlers are implemented in webapi.handlers. Handler code just
delegates to dedicated controllers.

	All controllers are implemented in webapi.controllers.*. They might
further delegate into core.*

Development Process

	Make sure there is an issue ticket for your code change work item

	Select issue, priorities are as follows

	“urgent” and (“important” and “bug”)

	“urgent” and (“important” or “bug”)

	“urgent”

	“important” and “bug”

	“important” or “bug”

	others

	Make sure issue is assigned to you, if unclear agree with team first.

	Add issue label “in progress”.

	Create development branch named "<developer>-<issue>-<title>"
(see below).

	Develop, having in mind the checklists and implementation hints
above.

	In your first commit, refer the issue so it will appear as link
in the issue history

	Develop, test, and push to the remote branch as desired.

	In your last commit, utilize checklists above.
(You can include the line “closes #<issue>” in your commit message
to auto-close the issue once the PR is merged.)

	Create PR if build servers succeed on your branch. If not, fix issue
first.
For the PR assign the team for review, agree who is to merge.
Also reviewers should have checklist in mind.

	Merge PR after all reviewers are accepted your change. Otherwise go
back.

	Remove issue label “in progress”.

	Delete the development branch.

	If the PR is only partly solving an issue:

	Make sure the issue contains a to-do list (checkboxes) to complete
the issue.

	Do not include the line “closes #<issue>” in your last commit
message.

	Add “relates to issue#” in PR.

	Make sure to check the corresponding to-do items (checkboxes)
after the PR is merged.

	Remove issue label “in progress”.

	Leave issue open.

Branches and Releases

Target Branch

The master branch contains latest developments, including new features and fixes.
Its software version string is always <major>.<minor>.<micro>.dev<n>.
The branch is used to generate major, minor, or maintenance releases.
That is, either <major>, <minor>, or <fix> is increased.
Before a release, the last thing we do is to remove the .dev<n> suffix,
after a release, the first thing we do is to increase the micro version and
add the .dev<n> suffix.

Development Branches

Development branches should be named <developer>-<issue>-<title> where

	<developer> is the github name of the code author

	<issue> is the number of the issue in the github issue tracker that is targeted
by the works on this branch

	<title> is either the name of the issue or an abbreviated version of it

Release Process

Release on GitHub

This describes the release process for xcube. For a plugin release,
you need to adjust the paths accordingly.

	Check issues in progress, close any open issues that have been fixed.

	Make sure that all unit tests pass and that test coverage is 100%
(or as near to 100% as practicable).

	In xcube/version.py remove the .dev suffix from version name.

	Adjust version in Dockerfile accordingly.

	Make sure CHANGES.md is complete. Remove the suffix (in development)
from the last version headline.

	Push changes to either master or a new maintenance branch (see above).

	Await results from Travis CI and ReadTheDocs builds. If broken, fix.

	Go to xcube/releases [https://github.com/dcs4cop/xcube/releases]
and press button “Draft a new Release”.

	Tag version is: v${version} (with a “v” prefix)

	Release title is: ${version} (without a “v” prefix)

	Paste latest changes from CHANGES.md into field “Describe this release”

	Press “Publish release” button

	After the release on GitHub, rebase sources, if the branch was master,
create a new maintenance branch (see above)

	In xcube/version.py increase version number and append a .dev0 suffix
to the version name so that it is still PEP-440 compatible.

	Adjust version in Dockerfile accordingly.

	In CHANGES.md add a new version headline and attach (in development) to it.

	Push changes to either master or a new maintenance branch (see above).

	Activate new doc version on ReadTheDocs.

Go through the same procedure for all xcube plugin packages
dependent on this version of xcube.

Release on Conda-Forge

These instructions are based on the documentation at
conda-forge [https://conda-forge.org/docs/maintainer/updating_pkgs.html].

Conda-forge packages are produced from a github feedstock repository belonging
to the conda-forge organization. A repository’s feedstock is usually located at
https://github.com/conda-forge/<repo-name>-feedstock, e.g.,
https://github.com/conda-forge/xcube-feedstock.
The package is updated by

	forking the repository

	creating a new branch for the changes

	creating a pull request to merge this branch into conda-forge’s feedstock repository
(this is done automatically if the build number is 0).

The first of these steps is usually already done.
You may find forks at https://github.com/dcs4cop/<repo-name>-feedstock .

In detail, the steps are:

	Update the dcs4cop fork of the feedstock repository, if it’s not already
up to date with conda-forge’s upstream repository.

	Clone the repository locally and create a new branch. The name of the branch
is not strictly prescribed, but it’s sensible to choose an informative name like
update_0_5_3.

	In case the build number is 0, a bot will render the feedstock during the pull request.
Otherwise, conduct the following steps:
Rerender the feedstock using conda-smithy. This updates common conda-forge
feedstock files. It’s probably easiest to install conda-smithy in a
fresh environment for this:

conda install -c conda-forge conda-smithy

conda smithy rerender -c auto

	Update recipe/meta.yaml for the new version.
Mainly this will involve the following steps:

	Update the value of the version variable (or, if the version number
has not changed, increment the build number).

	If the version number has changed, ensure that the build number is set to 0.

	Update the sha256 hash of the source archive prepared by GitHub.

	If the dependencies have changed, update the list of dependencies
in the -run subsection to match those in the environment.yml file.

	Commit the changes and push them to GitHub.
A pull request at the feedstock repository on conda-forge will be automatically
created by a bot if the build number is 0.
If it is higher, you will have to create the pull request yourself.

	Once conda-forge’s automated checks have passed, merge the pull request.

	Merge the newly-merged changes from the master branch on conda-forge back to
the master branch of the dcs4cop fork.
This step is not necessarily needed for the release, but it helps to avoid messy
parallel branches.

Once the pull request has been merged, the updated package should usually become
available from conda-forge within a couple of hours.

TODO: Describe deployment of xcube Docker image after release

If any changes apply to xcube serve and the xcube Web API:

Make sure changes are reflected in xcube/webapi/res/openapi.yml.
If there are changes, sync xcube/webapi/res/openapi.yml with
xcube Web API docs on SwaggerHub.

Check if changes affect the xcube-viewer code. If so
make sure changes are reflected in xcube-viewer code and
test viewer with latest xcube Web API. Then release a new xcube viewer.

xcube Viewer

	Cd into viewer project directory (.../xcube-viewer/.).

	Remove the -dev suffix from version property in package.json.

	Remove the -dev suffix from version constant in src/config.ts.

	Make sure CHANGES.md is complete. Remove the suffix (in development)
from the last version headline.

	Build the app and test the build using a local http-server, e.g.:

$ npm install -g http-server
$ cd build
$ http-server -p 3000 -c-1

	Push changes to either master or a new maintenance branch (see above).

	Goto xcube-viewer/releases [https://github.com/dcs4cop/xcube-viewer/releases]
and press button “Draft a new Release”.

	Tag version is: v${version} (with a “v” prefix).

	Release title is: ${version}.

	Paste latest changes from CHANGES.md into field “Describe this release”.

	Press “Publish release” button.

	After the release on GitHub, if the branch was master,
create a new maintenance branch (see above).

	Increase version property and version constant in package.json and src/config.ts
and append -dev.0 suffix to version name so it is SemVer compatible.

	In CHANGES.md add a new version headline and attach (in development) to it.

	Push changes to either master or a new maintenance branch (see above).

	Deploy builds of master branches to related web content providers.

Plugins

xcube’s functionality can be extended by plugins. A plugin contributes extensions to specific extension points
defined by xcube. Plugins are detected and dynamically loaded, once the available extensions need to be inquired.

Installing Plugins

Plugins are installed by simply installing the plugin’s package into xcube’s Python environment.

In order to be detected by xcube, an plugin package’s name must either start with xcube_
or the plugin package’s setup.py file must specify an entry point in the group
xcube_plugins. Details are provided below in section plugin_development.

Available Plugins

SENTINEL Hub

The xcube_sh [https://github.com/dcs4cop/xcube-sh] plugin adds support for the SENTINEL Hub Cloud API [https://www.sentinel-hub.com/]. It extends xcube by a new Python API
function xcube_sh.cube.open_cube to create data cubes from SENTINEL Hub on-the-fly. It also
adds a new CLI command xcube sh gen to generate and write data cubes created from SENTINEL Hub
into the file system.

ESA CCI Open Data Portal

The xcube_cci [https://github.com/dcs4cop/xcube-cci] plugin provides support for the ESA CCI Open Data Portal [https://climate.esa.int/en/odp/].

Copernicus Climate Data Store

The xcube_cds [https://github.com/dcs4cop/xcube-cds] plugin provides support for the Copernicus Climate Data Store [https://cds.climate.copernicus.eu/].

Cube Generation

xcube’s GitHub organisation currently hosts a few plugins that add new input processor extensions
(see below) to xcube’s data cube generation tool xcube gen. They are very specific
but are a good starting point for developing your own input processors:

	xcube_gen_bc [https://github.com/dcs4cop/xcube-gen-bc] - adds new input processors for specific
Ocean Colour Earth Observation products derived from the Sentinel-3 OLCI measurements.

	xcube_gen_rbins [https://github.com/dcs4cop/xcube-gen-rbins] - adds new input processors for specific
Ocean Colour Earth Observation products derived from the SEVIRI measurements.

	xcube_gen_vito [https://github.com/dcs4cop/xcube-gen-vito] - adds new input processors for specific
Ocean Colour Earth Observation products derived from the Sentinel-2 MSI measurements.

Plugin Development

Plugin Definition

An xcube plugin is a Python package that is installed in xcube’s Python environment.
xcube can detect plugins either

	by naming convention (more simple);

	by entry point (more flexible).

By naming convention: Any Python package named xcube_<name> that defines a plugin initializer function
named init_plugin either defined in xcube_<name>/plugin.py (preferred) or xcube_<name>/__init__.py
is an xcube plugin.

By entry point: Any Python package installed using Setuptools [https://setuptools.readthedocs.io/] that
defines a non-empty entry point group xcube_plugins is an xcube plugin. An entry point in the
xcube_plugins group has the format <name> = <fully-qualified-module-path>:<init-func-name>,
and therefore specifies where plugin initializer function named <init-func-name> is found.
As an example, refer to the xcube standard plugin definitions in xcube’s
setup.py [https://github.com/dcs4cop/xcube/blob/master/setup.py] file.

For more information on Setuptools entry points refer to section Creating and discovering plugins [https://packaging.python.org/guides/creating-and-discovering-plugins/] in the
Python Packing User Guide [https://packaging.python.org/] and Dynamic Discovery of Services and Plugins [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins] in the Setuptools documentation [https://setuptools.readthedocs.io/].

Initializer Function

xcube plugins are initialized using a dedicated function that has a single extension registry argument
of type xcube.util.extension.ExtensionRegistry, that is used by plugins’s to register their extensions
to xcube. By convention, this function is called init_plugin, however, when using entry points,
it can have any name. As an example, here is the initializer function of the SENTINEL Hub plugin
xcube_sh/plugin.py::

from xcube.constants import EXTENSION_POINT_CLI_COMMANDS
from xcube.util import extension

def init_plugin(ext_registry: extension.ExtensionRegistry):
 """xcube SentinelHub extensions"""
 ext_registry.add_extension(loader=extension.import_component('xcube_sh.cli:cli'),
 point=EXTENSION_POINT_CLI_COMMANDS,
 name='sh_cli')

Extension Points and Extensions

When a plugin is loaded, it adds its extensions to predefined extension points defined by xcube.
xcube defines the following extension points:

	xcube.core.gen.iproc: input processor extensions

	xcube.core.dsio: dataset I/O extensions

	xcube.cli: Command-line interface (CLI) extensions

An extension is added to the extension registry’s add_extension method. The extension registry is
passed to the plugin initializer function as its only argument.

Input Processor Extensions

Input processors are used the xcube gen CLI command and gen_cube API function.
An input processor is responsible for processing individual time slices after they have been
opened from their sources and before they are appended to or inserted into the data cube
to be generated. New input processors are usually programmed to support the characteristics
of specific xcube gen inputs, mostly specific Earth Observation data products.

By default, xcube uses a standard input processor named default that expects inputs
to be individual NetCDF files that conform to the CF-convention. Every file is expected
to contain a single spatial image with dimensions lat and lon and the time
is expected to be given as global attributes.

If your input files do not conform with the default expectations, you can extend xcube
and write your own input processor. An input processor is an implementation of the
xcube.core.gen.iproc.InputProcessor or xcube.core.gen.iproc.XYInputProcessor
class.

As an example take a look at the implementation of the default input processor
xcube.core.gen.iproc.DefaultInputProcessor [https://github.com/dcs4cop/xcube/blob/master/xcube/core/gen/iproc.py] or the various input processor plugins mentioned above.

The extension point identifier is defined by the constant xcube.constants.EXTENSION_POINT_INPUT_PROCESSORS.

Dataset I/O Extensions

More coming soon…

The extension point identifier is defined by the constant xcube.constants.EXTENSION_POINT_DATASET_IOS.

CLI Extensions

CLI extensions enhance the xcube command-line tool by new sub-commands.
The xcube CLI is implemented using the click [https://click.palletsprojects.com] library, therefore the extension
components must be click commands or command groups [https://click.palletsprojects.com/en/7.x/commands/].

The extension point identifier is defined by the constant xcube.constants.EXTENSION_POINT_CLI_COMMANDS.

Index

 A
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | T
 | U

A

 	
 	add_extension() (xcube.util.extension.ExtensionRegistry method)

C

 	
 	chunk_dataset() (in module xcube.core.chunk)

 	
 	component (xcube.util.extension.Extension property)

E

 	
 	edit_metadata() (in module xcube.core.edit)

 	evaluate_dataset() (in module xcube.core.evaluate)

 	Extension (class in xcube.util.extension)

 	
 	EXTENSION_POINT_CLI_COMMANDS (in module xcube.constants)

 	EXTENSION_POINT_DATASET_IOS (in module xcube.constants)

 	EXTENSION_POINT_INPUT_PROCESSORS (in module xcube.constants)

 	ExtensionRegistry (class in xcube.util.extension)

F

 	
 	find_components() (xcube.util.extension.ExtensionRegistry method)

 	
 	find_extensions() (xcube.util.extension.ExtensionRegistry method)

G

 	
 	get_component() (xcube.util.extension.ExtensionRegistry method)

 	get_extension() (xcube.util.extension.ExtensionRegistry method)

 	
 	get_extension_registry() (in module xcube.util.plugin)

 	get_mask_sets() (xcube.core.maskset.MaskSet class method)

 	get_plugins() (in module xcube.util.plugin)

H

 	
 	has_extension() (xcube.util.extension.ExtensionRegistry method)

I

 	
 	import_component() (in module xcube.util.extension)

 	
 	is_lazy (xcube.util.extension.Extension property)

M

 	
 	MaskSet (class in xcube.core.maskset)

 	
 	metadata (xcube.util.extension.Extension property)

N

 	
 	name (xcube.util.extension.Extension property)

 	
 	new_cube() (in module xcube.core.new)

O

 	
 	optimize_dataset() (in module xcube.core.optimize)

P

 	
 	point (xcube.util.extension.Extension property)

R

 	
 	remove_extension() (xcube.util.extension.ExtensionRegistry method)

T

 	
 	to_dict() (xcube.util.extension.Extension method)

 	(xcube.util.extension.ExtensionRegistry method)

U

 	
 	unchunk_dataset() (in module xcube.core.unchunk)

 	update_dataset_attrs() (in module xcube.core.update)

 	
 	update_dataset_spatial_attrs() (in module xcube.core.update)

 	update_dataset_temporal_attrs() (in module xcube.core.update)

Common data store conventions

This document is a work in progress.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [https://tools.ietf.org/html/rfc2119].

Useful references related to this document include:

	The JSON Schema Specification [https://json-schema.org/specification.html]
and the book Understanding JSON
Schema [https://json-schema.org/understanding-json-schema/]

	xcube Issue #330 [https://github.com/dcs4cop/xcube/issues/330]
(‘Establish common data store conventions’)

	The existing xcube store plugins
xcube-sh [https://github.com/dcs4cop/xcube-sh/],
xcube-cci [https://github.com/dcs4cop/xcube-sh/], and
xcube-cds [https://github.com/dcs4cop/xcube-cds]

	The
xcube.util.jsonschema [https://github.com/dcs4cop/xcube/blob/master/xcube/util/jsonschema.py] source code

Naming Identifiers

This section explains various identifiers used by the xcube data store framework and defines their format.

In the DataStore framework, identifiers are used to denote data sources, data stores, and data accessors.
Data store, data opener, and data writer identifiers are used to register the component as extension in a package’s plugin.py.
Identifiers MUST be unambiguous in the scope of the data store.
They SHOULD be unambiguous across the entirety of data stores.

There are no further restrictions for data source and data store identifiers.

A data accessor identifier MUST correspond to the following scheme:

<data_type>:<format>:<storage>[:<version>]

<data_type> identifies the in-memory data type to represent the data,
e.g., dataset (or xarray.Dataset), geodataframe
(or geopandas.GeoDataFrame).
<format> identifies the data format that may be accessed,
e.g., zarr, netcdf, geojson.
<storage> identifies the kind of storage or data provision the
accessor can access. Example values are file (the local file system),
s3 (AWS S3-compatible object storage), or sentinelhub
(the Sentinel Hub API), or cciodp (the ESA CCI Open Data Portal API).
The <version> finally is an optional notifier
about a data accessor’s version. The version MUST follow the
Semantic Versioning [https://semver.org].

Examples for valid data accessors identifiers are:

	dataset:netcdf:file

	dataset:zarr:sentinelhub

	geodataframe:geojson:file

	geodataframe:shapefile:cciodp:0.4.1

Open Parameters

This section aims to provide an overview of the interface defined by an xcube
data store or opener in its open parameters schema, and how this schema may be
used by a UI generator to automatically construct a user interface for a data
opener.

Specification of open parameters

Every implementation of the xcube.core.store.DataOpener or
xcube.core.store.DataStore abstract base classes MUST implement the
get_open_data_params_schema method in order to provide a description of the
allowed arguments to open_data for each dataset supported by the
DataOpener or DataStore. The description is provided as a
JsonObjectSchema object corresponding to a JSON
Schema [https://json-schema.org/]. The intention is that this description should be
full and detailed enough to allow the automatic construction of a user
interface for access to the available datasets. Note that, under this system:

	Every dataset provided by an opener can support a different set of
open parameters.

	The schema does not allow the representation of interdependencies between
values of open parameters within a dataset. For instance, the following
interdependencies between two open parameters sensor_type and
variables would not be representable in an open parameters schema:

sensor_type: A or B
variables: [temperature, humidity] for sensor type A;
[temperature, pressure] for sensor type B

To work around some of the restrictions of point (2) above, a dataset MAY be
presented by the opener as multiple “virtual” datasets with different
parameter schemas. For instance, the hypothetical dataset described above MAY
be offered not as a single dataset envdata but as two datasets
envdata:sensor-a (with a fixed sensor_type of A) and envdata:sensor-b,
(with a fixed sensor_type of B), offering different sets of permitted
variables.
Sometimes, the interdependencies between parameters are too complex to
be fully represented by splitting datasets in this manner. In these cases:

	The JSON Schema SHOULD describe the smallest possible superset of the
allowed parameter combinations.

	The additional restrictions on parameter combinations MUST be clearly
documented.

	If illegal parameter combinations are supplied, the opener MUST raise an
exception with an informative error message, and the user interface
SHOULD present this message clearly to the user.

Common parameters

While an opener is free to define any open parameters for any of its datasets,
there are some common parameters which are likely to be used by the majority
of datasets. Furthermore, there are some parameters which are fundamental for the
description of a dataset and therefore MUST be included in a schema
(these parameters are denoted explicitly in the list below). In case that an
opener does not support varying values of one of these parameters, a constant
value must defined. This may be achieved by the JSON schema’s const property
or by an enum property value whose is a one-element array.

Any dataset requiring the specification of these parameters MUST
use the standard parameter names, syntax, and semantics defined below, in
order to keep the interface consistent. For instance, if a dataset allows a
time aggregation period to be specified, it MUST use the time_period
parameter with the format described below rather than some other alternative
name and/or format. Below, the parameters are described with their Python type
annotations.

	variable_names: List[str]
A list of the identifiers of the requested variables.
This parameter MUST be included in an opener parameters schema.

	bbox: Union[str,Tuple[float, float, float, float]]
The bounding box for the requested data, in the order xmin, ymin, xmax, ymax.
Must be given in the units of the specified spatial coordinate reference system crs.
This parameter MUST be included in an opener parameters schema.

	crs: str
The identifier for the spatial coordinate reference system of geographic data.

	spatial_res: float
The requested spatial resolution (x and y) of the returned data.
Must be given in the units of the specified spatial coordinate reference system crs.
This parameter MUST be included in an opener parameters schema.

	time_range: Tuple[Optional[str], Optional[str]]
The requested time range for the data to be returned.
The first member of the tuple is the start time; the second is the end time.
See section
‘Date, time, and duration specifications’.
This parameter MUST be included in an opener parameters schema.
If a date without a time is given as the start time,
it is interpeted as 00:00 on the specified date.
If a date without a time is given as the end time,
it is interpreted as 24:00 on the specified date
(identical with 00:00 on the date following the specified date).
If the end time is specified as None,
it is interpreted as the current time.

	time_period: str
The requested temporal aggregation period for the data. See section
‘Date, time, and duration specifications’.
This parameter MUST be included in an opener parameters schema.

	force_cube: bool
Whether to return results as a specification-compliant
xcube [https://github.com/dcs4cop/xcube/blob/master/docs/source/cubespec.md].
If a store supports this parameter and if a dataset is opened with this
parameter set to True, the store MUST return a specification-compliant
xcube dataset. If this parameter is not supported or if a dataset is opened with
this parameter set to False, the caller MUST NOT assume that the returned
data conform to the xcube specification.

Semantics of list-valued parameters

The variables parameter takes as its value a list, with no duplicated members
and the values of its members drawn from a predefined set. The values of this
parameter, and other parameters whose values also follow such a format, are
interpreted by xcube as a restriction, much like a bounding box or time
range. That is:

	By default (if the parameter is omitted or if a None value is supplied
for it), all the possible member values MUST be included in the list. In
the case of variables, this will result in a dataset containing all the
available variables.

	If a list containing some of the possible members is given, a dataset
corresponding to those members only MUST be returned. In the case of
variables, this will result in a dataset containing only the requested
variables.

	A special case of the above: if an empty list is supplied, a dataset
containing no data MUST be returned – but with the requested spatial and
temporal dimensions.

Date, time, and duration specifications

In the common parameter time_range, times can be specified using the
standard JSON Schema formats date-time or date. Any additional time or
date parameters supported by an xcube opener dataset SHOULD also use these
formats, unless there is some good reason to prefer a different format.

The formats are described in the JSON Schema Validation 2019
draft [https://json-schema.org/draft/2019-09/json-schema-validation.html#rfc.section.7.3.1],
which adopts definitions from RFC 3339 Section
5.6 [https://tools.ietf.org/html/rfc3339#section-5.6]. The JSON Schema
date-time format corresponds to RFC 3339’s date-time production, and JSON
Schema’s date format to RFC 3339’s full-date production. These formats are
subsets of the widely adopted ISO
8601 [https://en.wikipedia.org/wiki/ISO_8601] format.

The date format corresponds to the pattern YYYY-MM-DD (four-digit year –
month – day), for example 1995-08-20. The date-time format consists of a
date (in the date format), a time (in HH:MM:SS format), and timezone (Z
for UTC, or +HH:MM or -HH:MM format). The date and time are separated by
the letter T. Examples of date-time format include 1961-03-23T12:22:45Z
and 2018-04-01T21:12:00+08:00. Fractions of a second MAY also be included,
but are unlikely to be relevant for xcube openers.

The format for durations, as used for aggregation period, does not conform
to the syntax defined for this purpose in the ISO 8601 standard (which is also
quoted as Appendix A of RFC 3339). Instead, the required format is a small
subset of the pandas time series frequency
syntax [https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases],
defined by the following regular expression:

^([1-9][0-9]*)?[HDWMY]$

That is: an optional positive integer followed by one of the letters H (hour),
D (day), W (week), M (month), and Y (year). The letter specifies the time unit
and the integer specifies the number of units. If the integer is omitted, 1 is
assumed.

Time limits: an extension to the JSON Schema

JSON Schema itself does not offer a way to impose time limits on a string
schema with the date or date-time format. This is a problem for xcube
generator UI creation, since it might be reasonably expected that a UI will
show and enforce such limits. The xcube opener API therefore defines an
unofficial extension to the JSON string schema: a JsonStringSchema object
(as returned as part of a JsonSchema by a call to
get_open_data_params_schema) MAY, if it has a format property with a value
of date or date-time, also have one or both of the properties
min_datetime and max_datetime. These properties must also conform to the
date or date-time format. xcube provides a dedicated JsonDatetimeSchema
for this purpose. Internally, it extends JsonStringSchema by adding the
required properties to the JSON string schema.

Generating a UI from a schema

With the addition of the time limits extension described above, the JSON
Schema returned by get_open_data_params_schema is expected to be extensive
and detailed enough to fully describe a UI for cube generation.

Order of properties in a schema

Sub-elements of a JsonObjectSchema are passed to the constructor using the
properties parameter with type signature Mapping[str, JsonSchema]. Openers
SHOULD provide an ordered mapping as the value of properties, with the
elements placed in an order suitable for presentation in a UI, and UI
generators SHOULD lay out the UI in the provided order, with the exception of
the common parameters discussed below. Note that the CPython dict object
preserves the insertion order of its elements as of Python 3.6, and that this
behaviour is officially guaranteed as of Python 3.7, so additional classes
like OrderedDict are no longer necessary to fulfil this requirement.

Special handling of common parameters

Any of the common parameters listed above SHOULD, if present, be recognized
and handled specially. They SHOULD be presented in a consistent position
(e.g. at the top of the page for a web GUI), in a consistent order, and with
user-friendly labels and tooltips even if the title and description
annotations (see below) are absent. The UI generator MAY provide special
representations for these parameters, for instance an interactive map for the
bbox parameter.

An opener MAY provide title, description, and/or examples annotations
for any of the common parameters, and a UI generator MAY choose to use any of
these to supplement or modify its standard presentation of the common
parameters.

Schema annotations (title, description, examples, and default)

For JSON Schemas describing parameters other than the common parameters, an
opener SHOULD provide the title and description annotations. A UI
generator SHOULD make use of these annotations, for example by taking the
label for a UI control from title and the tooltip from description. The
opener and UI generator MAY additionally make use of the examples annotation
to record and display example values for a parameter. If a sensible default
value can be envisaged, the opener SHOULD record this default as the value of
the default annotation and the UI generator SHOULD set the default value in
the UI accordingly. If the title annotation is absent, the UI generator
SHOULD use the key corresponding to the parameter’s schema in the parent
schema as a fallback.

Generalized conversion of parameter schemas

For parameters other than the common parameters, the UI can be generated
automatically from the schema structure. In the case of a GUI, a one-to-one
conversion of values of JSON Schema properties into GUI elements will
generally be fairly straightforward. For instance:

	A schema of type boolean can be represented as a checkbox.

	A schema of type string without restrictions on allowed items can be
represented as an editable text field.

	A schema of type string with an enum keyword giving a list of
allowed values can be represented as a drop-down menu.

	A schema of type string with the keyword setting "format": "date" can
be represented as a specialized date selector.

	A schema of type array with the keyword setting "uniqueItems": true and
an items keyword giving a fixed list of allowed values can be represented
as a list of checkboxes.

xcube

$ xcube --help

Usage: xcube [OPTIONS] COMMAND [ARGS]...

Xcube Toolkit

Options:
 --version Show the version and exit.
 --traceback Enable tracing back errors by dumping the Python
 call stack. Pass as very first option to also trace
 back error during command-line validation.
 --scheduler SCHEDULER Enable distributed computing using the Dask
 scheduler identified by SCHEDULER. SCHEDULER
 can have the form <address>?<keyword>=<value>,...
 where <address> is <host> or <host>:<port> and
 specifies the scheduler's address in your network.
 For more information on distributed computing using
 Dask, refer to http://distributed.dask.org/. Pairs
 of <keyword>=<value> are passed to the Dask client.
 Refer to http://distributed.dask.org/en/latest/api.
 html#distributed.Client
 --help Show this message and exit.

Commands:
 chunk (Re-)chunk xcube dataset.
 dump Dump contents of an input dataset.
 extract Extract cube points.
 gen Generate xcube dataset.
 grid Find spatial xcube dataset resolutions and adjust bounding boxes.
 level Generate multi-resolution levels.
 optimize Optimize xcube dataset for faster access.
 prune Delete empty chunks.
 resample Resample data along the time dimension.
 serve Serve data cubes via web service.
 vars2dim Convert cube variables into new dimension.
 verify Perform cube verification.

 _static/images/viewer/screenshot_variables.png
DCS4COP Viewer
Chlorophyll concontration

717 (80) - Totalsuspendod maftercry weight conconiration

tur_nechad_665

_images/screenshot_circle.png
DCS4COP Viewer

]
3 North Sea 2017 1T (BC) ~ Chiorophyll concentration + Croe1 © X O 4 @ 2017052512050 B Kk < ® > >
wraron o
wrraron oz
Time.Sares (mg m3) x
e
©
=
. V.7, Ve SO O GRS W, ,__i\,\ 2
!
oy S S T i

< eh_core (Cacke 1) = chl_cree (Poygon 1)

_images/screenshot_colormap.png
North Sea 2017 IT (BC) + Chiorophyll conceniration ~ v Polygon 1~ © | (8} 2017.0824 110520

_images/screenshot_calendar.png
DCS4COP Viewer 2]
53 North Sea 2017 IT (BC) + Chlorophyll concentation ~ ce1- © (19 @ 2017.0525120501 B Kk < ® > >
May 25 12:05 o T
o mmd s
>
SRR, 7. SV VA0 LIRS S S -L;
o :

TR0 ST w2017 20ty

< hlcrce Cice 1) < chlc2rce (Polgon 1)

_images/screenshot_change_variable.png
DCS4COP Viewer

3 North Sea 2017 IT (BC)

Chiorophyll concentration

o~ Point1

2017:0525 120501 B kK <« ® > o
mroszzen 8 Py 23

270101 71231

Timo-Sorios (9 m-3)

x

20

. ¥

55 >

o T e w0
sm_crce Pont 1:53.58659,020011)

Tz

_images/screenshot_datasets.png
€ 53 North Sea 2017 T (BC) weight concentration) 2017

53 North Sea 2017 T (BC 0BS)

3 North Sea 2017 W (BC)

52 Flanders 201717 (8C

52 Flanders 2017 17 BC)
Flanders 2017 W (BC 0S)

S2 Flanders 2017 1D (BC OBS) 7 -

‘CMEMS SST North Sea 2017 1D (BC)

2017 1D (BC 0BS)

‘CMEMS SST North Sea 2017 1W (BC 0BS) T

‘SE Southem North Soa 2017 IT (RBINS 0BS)
‘CMEMS SST Southern North Sea IT (RBINS OBS)

‘CMEMS SPM Southern North Sea IT (RBINS OBS)

2 Chia & SPM Souther North Soa T (RBINS OBS)

3 Chla Southern North Sea IT (RBINS OBS)

_images/screenshot_overview.png
DCS4COP Viewer

22017 1T (BC) - Tota suspended matter 2017-0524 105030

_images/screenshot_polygon.png
DCS4COP Viewer 2]

3 North Sea 2017 IT (BC) ~ Chlorophyll concentration ~ Poygon 1~ © 9 /& o 201525120501 Bk < ® > »

270101 271201

20170101 2171231

Timo-Sories (mg m-3) x

e

ot a0t B w1017 TR12017
e carce Poygon 1)

nav.xhtml

 Table of Contents

 		
 xcube - An xarray-based EO data cube toolkit

 		
 Overview

 		
 Data Cube

 		
 xcube Dataset

 		
 Data Model

 		
 Data Chunks

 		
 Processing Model

 		
 Data Format

 		
 Python Packages

 		
 Toolkit

 		
 Workflows

 		
 Examples

 		
 Generating an xcube dataset

 		
 Analysed Sea Surface Temperature over the Global Ocean

 		
 Optimizing and pruning a xcube dataset

 		
 Publishing xcube datasets

 		
 Running the server

 		
 Test it

 		
 xcube Viewer

 		
 Other clients

 		
 Installation

 		
 Installation from the conda package

 		
 Installation from the source code repository

 		
 Installation using mamba

 		
 Docker

 		
 CLI

 		
 Common Arguments and Options

 		
 Cube generation

 		
 xcube gen

 		
 xcube grid

 		
 Cube computation

 		
 xcube compute

 		
 Cube inspection

 		
 xcube dump

 		
 xcube verify

 		
 Cube data extraction

 		
 xcube extract

 		
 Cube manipulation

 		
 xcube chunk

 		
 xcube edit

 		
 xcube level

 		
 xcube optimize

 		
 xcube prune

 		
 xcube resample

 		
 xcube vars2dim

 		
 Cube conversion

 		
 xcube tile

 		
 xcube level

 		
 Cube publication

 		
 xcube serve

 		
 Python API

 		
 Cube I/O

 		
 Cube generation

 		
 Cube computation

 		
 Cube data extraction

 		
 Cube manipulation

 		
 Cube subsetting

 		
 Cube masking

 		
 Rasterisation of Features

 		
 Cube metadata

 		
 Cube verification

 		
 Multi-resolution pyramids

 		
 Utilities

 		
 Plugin Development

 		
 Web API and Server

 		
 Viewer App

 		
 Demo

 		
 Functionality

 		
 Build and Deploy

 		
 The xcube generator

 		
 Introduction

 		
 Further documentation

 		
 The generation process

 		
 Invoking the generator from a Python environment

 		
 Invoking the generator from the command line

 		
 Configuration syntax

 		
 Remote generator service configuration

 		
 Store configuration

 		
 Input configuration

 		
 Cube configuration

 		
 Code configuration

 		
 Output configuration

 		
 xcube Dataset Specification

 		
 Document Status

 		
 Motivation

 		
 High-level requirements

 		
 xcube Dataset Schemas

 		
 Basic Schema

 		
 WGS84 Schema (extends Basic)

 		
 Generic Schema (extends Basic)

 		
 xcube EO Processing Levels

 		
 Level-1C and Level-2C

 		
 Level-3

 		
 xcube Developer Guide

 		
 Table of Contents

 		
 Versioning

 		
 Coding Style

 		
 Updating code style in the existing codebase

 		
 Line length

 		
 Quotation marks for string literals

 		
 Main Packages

 		
 Package xcube.cli

 		
 Package xcube.core

 		
 Package xcube.webapi

 		
 Hints

 		
 Development Process

 		
 Branches and Releases

 		
 Target Branch

 		
 Development Branches

 		
 Release Process

 		
 Release on GitHub

 		
 Release on Conda-Forge

 		
 xcube Viewer

 		
 Plugins

 		
 Installing Plugins

 		
 Available Plugins

 		
 SENTINEL Hub

 		
 ESA CCI Open Data Portal

 		
 Copernicus Climate Data Store

 		
 Cube Generation

 		
 Plugin Development

 		
 Plugin Definition

 		
 Initializer Function

 		
 Extension Points and Extensions

 		
 Input Processor Extensions

 		
 Dataset I/O Extensions

 		
 CLI Extensions

_images/screenshot_timeseries.png
DCS4COP Viewer

53 North Sea 2017 1T (BC) ~Total susponded mater dry weight concentration ~

Point 1 +

©]

2]
20170525 120501 Bk < ® > 3
270101 w1231
2170101 20171231
Time-Series (m-3) x
207 =
g iz ansin T

sm_c2rc (Poin 1:53.59653,02081)

_images/screenshot_timeseries_second_location.png
DCS4COP Viewer 8

53 North Sea 2017 T BC) = Chiorophyll concentration ~ Pont2 + @ 4 @ 0170525120501 B k< ® > »

EE— .
.
.
& \

RS .
20 »
55- . k2

sm_cree Pont 159 50650, 20911)

_images/screenshot_settings.png
53 North Sea 2017 1T (BC) ~ Chiorophyll concentration ~

—
270101 71201

R,
271231

X

vz Tz

e G 1)

_images/screenshot_timeline.png
DCS4COP Viewer

53 North Sea 2017 T (BC) -

Chlorophyll concenration «

]

408 2020520 Bk <« ® >
o x
. o bttt wf_.

et crec (Cile 1) < chc2rce Potygon 1)

_images/screenshot_variables.png
DCS4COP Viewer
Chlorophyll concontration

717 (80) - Totalsuspendod maftercry weight conconiration

tur_nechad_665

_images/screenshot_xcube_viewer_sst_docu.png
xcube Viewer

|

Batiiava

20 anatysed st (kehin) 2

_images/screenshot_timeseries_second_variable.png
DCS4COP Viewer B8

53 North Soa 2017 T(5C) = Chorophyl concentaon ~ .+ Poit 1 ~ @ 9 4@ WimEREN @ K < © > o

2170101 2171231

2170101 2171231

Time-Series (mg m"-3) x

P

1 ' : x

s

0T 20T Sa017 1502017 T2m12017

e cree (P 1 53506590 20911)
Timo-Sorios (9 m-3) x

20

165 » »

o vy U - "

55

o
i1 e s s T
tsm_cree (Pt 1 59.50659,0 20911)

_images/screenshot_value_ranges.png
53 North Sea 2017 T (BC) = Chiorophyll concentraion ~ v Polygon 1~ © | 8} 70824 11:0520

= Dol
Dublin S Shoffiid.

_static/file.png

_static/plus.png

_static/logo.png
agnox

_static/minus.png

_static/images/viewer/screenshot_change_variable.png
DCS4COP Viewer

3 North Sea 2017 IT (BC)

Chiorophyll concentration

o~ Point1

2017:0525 120501 B kK <« ® > o
mroszzen 8 Py 23

270101 71231

Timo-Sorios (9 m-3)

x

20

. ¥

55 >

o T e w0
sm_crce Pont 1:53.58659,020011)

Tz

_static/images/viewer/screenshot_circle.png
DCS4COP Viewer

]
3 North Sea 2017 1T (BC) ~ Chiorophyll concentration + Croe1 © X O 4 @ 2017052512050 B Kk < ® > >
wraron o
wrraron oz
Time.Sares (mg m3) x
e
©
=
. V.7, Ve SO O GRS W, ,__i\,\ 2
!
oy S S T i

< eh_core (Cacke 1) = chl_cree (Poygon 1)

_static/screenshot_xcube_viewer_sst_docu.png
xcube Viewer

|

Batiiava

20 anatysed st (kehin) 2

_static/images/viewer/screenshot_calendar.png
DCS4COP Viewer 2]
53 North Sea 2017 IT (BC) + Chlorophyll concentation ~ ce1- © (19 @ 2017.0525120501 B Kk < ® > >
May 25 12:05 o T
o mmd s
>
SRR, 7. SV VA0 LIRS S S -L;
o :

TR0 ST w2017 20ty

< hlcrce Cice 1) < chlc2rce (Polgon 1)

_static/images/viewer/screenshot_datasets.png
€ 53 North Sea 2017 T (BC) weight concentration) 2017

53 North Sea 2017 T (BC 0BS)

3 North Sea 2017 W (BC)

52 Flanders 201717 (8C

52 Flanders 2017 17 BC)
Flanders 2017 W (BC 0S)

S2 Flanders 2017 1D (BC OBS) 7 -

‘CMEMS SST North Sea 2017 1D (BC)

2017 1D (BC 0BS)

‘CMEMS SST North Sea 2017 1W (BC 0BS) T

‘SE Southem North Soa 2017 IT (RBINS 0BS)
‘CMEMS SST Southern North Sea IT (RBINS OBS)

‘CMEMS SPM Southern North Sea IT (RBINS OBS)

2 Chia & SPM Souther North Soa T (RBINS OBS)

3 Chla Southern North Sea IT (RBINS OBS)

_static/images/viewer/screenshot_overview.png
DCS4COP Viewer

22017 1T (BC) - Tota suspended matter 2017-0524 105030

_static/images/viewer/screenshot_colormap.png
North Sea 2017 IT (BC) + Chiorophyll conceniration ~ v Polygon 1~ © | (8} 2017.0824 110520

_static/images/viewer/screenshot_timeline.png
DCS4COP Viewer

53 North Sea 2017 T (BC) -

Chlorophyll concenration «

]

408 2020520 Bk <« ® >
o x
. o bttt wf_.

et crec (Cile 1) < chc2rce Potygon 1)

_static/images/viewer/screenshot_timeseries.png
DCS4COP Viewer

53 North Sea 2017 1T (BC) ~Total susponded mater dry weight concentration ~

Point 1 +

©]

2]
20170525 120501 Bk < ® > 3
270101 w1231
2170101 20171231
Time-Series (m-3) x
207 =
g iz ansin T

sm_c2rc (Poin 1:53.59653,02081)

_static/images/viewer/screenshot_polygon.png
DCS4COP Viewer 2]

3 North Sea 2017 IT (BC) ~ Chlorophyll concentration ~ Poygon 1~ © 9 /& o 201525120501 Bk < ® > »

270101 271201

20170101 2171231

Timo-Sories (mg m-3) x

e

ot a0t B w1017 TR12017
e carce Poygon 1)

_static/images/viewer/screenshot_settings.png
53 North Sea 2017 1T (BC) ~ Chiorophyll concentration ~

—
270101 71201

R,
271231

X

vz Tz

e G 1)

_static/images/viewer/screenshot_value_ranges.png
53 North Sea 2017 T (BC) = Chiorophyll concentraion ~ v Polygon 1~ © | 8} 70824 11:0520

= Dol
Dublin S Shoffiid.

_static/images/viewer/screenshot_timeseries_second_location.png
DCS4COP Viewer 8

53 North Sea 2017 T BC) = Chiorophyll concentration ~ Pont2 + @ 4 @ 0170525120501 B k< ® > »

EE— .
.
.
& \

RS .
20 »
55- . k2

sm_cree Pont 159 50650, 20911)

_static/images/viewer/screenshot_timeseries_second_variable.png
DCS4COP Viewer B8

53 North Soa 2017 T(5C) = Chorophyl concentaon ~ .+ Poit 1 ~ @ 9 4@ WimEREN @ K < © > o

2170101 2171231

2170101 2171231

Time-Series (mg m"-3) x

P

1 ' : x

s

0T 20T Sa017 1502017 T2m12017

e cree (P 1 53506590 20911)
Timo-Sorios (9 m-3) x

20

165 » »

o vy U - "

55

o
i1 e s s T
tsm_cree (Pt 1 59.50659,0 20911)

